Studies on endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica (C.B. Clarke) Pamp. and their antagonistic activity against Phytophthora infestans

  • Pyuhunlang Myrchiang Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
  • M. S. Dkhar Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
  • Haobam Romola Devi Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
Keywords: Fungal endophytes, Antagonistic effect, Dual culture, Artemisia nilagirica, Phytophthora infestans

Abstract

Antagonistic activity of endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica was studied against the pathogen Phytophthora infestans that causes late blight of potato. The study has a dual purpose, firstly identification of endophytic fungi isolated from Artemisia nilagirica; secondly, to evaluate their antagonism against Phytophthora infestans using the dual culture method. Altogether 23 fungal endophytes were isolated from root, stem and leaf of which 14 fungal endophytes were isolated from roots, 10 from stem and 6 from leaf. Among the isolates, 4 fungal species, namely Trichoderma viride, Penicillium atrovenetum, Aspergillus fumigatus and Cladosporium cladosporioides were selected to study the antagonistic effect against Phytophthora infestans. T. viride was found to have the highest percentage of inhibition of 67.0% followed by A. fumigates (59.6%), P. atrovenetum (56.7%) and C. cladosporioides (33.0%). Among the test organisms, a zone of inhibition was produced only by T. viride and P. atrovenetum. T. viride showed the maximum inhibition zone of 1cm against P. infestans while that of P. atrovenetum was 0.4cm. This study shows that out of the four test organisms, Trichoderma viride may be recommended as a good source of biocontrol agent against P. infestans the causal organism of potato late blight.

Downloads

Download data is not yet available.

References

[1]. Adebola, M.O. and Amadi, J.E. (2010). Screening three Aspergillus species for antagonistic activities against the cocoa black pod organism (Phytophthora palmivora). Agric. Biol. J. N. Am., 1(3):362-365.
[2]. Adejumo, T.O., Ikotun, T. and Florini, D.A. (1999). Biological control of Protomycopsis phaseoli, the causal agent of leaf smut of Cowpea. J. Phytopathol., 147(6): 371-375.
[3]. Azevedo, J.L., Maccheroni, W. Jr., Pereira, J.O. and de Araujo, W.L. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron. J. Biotech., 3: 40-65.
[4]. Backman, P.A. and Sikora, R.A. (2008). Endophytes: An emerging tool for biological control. Biol. Control, 46: 1-3.
[5]. Barnett, K.L. and Hunter, B.B. (1972). Illustrated genera of Imperfect Fungi. 3rd Edition, Burgess Publishing Co., Minneapolis, 241 p.
[6]. Carroll, G.C. (1986). The biology of endophytism in plants with particular reference to woody perennials. In: Microbiology of the Phyllosphere, (Eds. Fokkema, N.J. and Van den Heuve, J.) Cambridge University Press, Cambridge.
[7]. Chet, I., Inbar, J. and Hadar, I. (1997). Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The Mycota IV: 1st edn. Environmental and microbial relationships. Springer-Verlag, Berlin, Heidelberg, New York, pp 165-184.
[8]. Clay, K. and Schardl, C.L. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat., 160: S99–S127.
[9]. Clay, K., Fuqua, C., Lively, C.M., Wade, M.J. (2006). Microbial community ecology of tick-borne human pathogens In: Collinge, S.K., Ray, C., (eds) Disease Ecology: Community Structure and Pathogen Dynamics Oxford University Press: Oxford; 41–57.
[10]. Domsch, K.H., Gams, W. and Anderson, T.H. (1980). Compendium of soil fungi. Academic Press, London.
[11]. Druvefors, U., Jonsson, N., Boysen, M.E. and Schnürer, J. (2002). Efficacy of the biocontrol yeast Pichia anomala during long-term storage of moist feed grain under different oxygen and carbon dioxide regimens. FEMS Yeast Research, 2: 389-394.
[12]. Ellis, M.B. (1971). Dematiaceous Hyphomycetes. CMI, Kew, Surrey, England.
[13]. Faeth, S.H., Helander, M.L. and Saikkonen, K.T. (2004). Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecology Letters, 7: 304-313.
[14]. Fisher, P.J., Sutton, B.C., Petrini, L.E. and Petrini, O. (1994). Fungal endophytes from Opuntia stricta: a first report. Nova Hedwigia, 59:195–200.
[15]. Goveas, S.W., Madtha, R., Nivas, S.K. and D’Souza, L. (2011). Isolation of endophytic fungi from Coscinium fenestratum- a red listed endangered medicinal plant. Eurasian J. Biosci., 5: 48-53.
[16]. Huang, W.Y., Cai, Y.Z., Hyde, K.D., Corke, H. and Sun, M. (2008). Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Diversity., 33: 61-75.
[17]. Knop, M., Pacyna, S., Voloshchuk, N., Kjant, S., Müllenborn, C., Steiner, U., Kirchmair, M., Scherer, H.W. and Schulz, M. (2007). Zea mays: Benzoxalinone Detoxification under sulfur deficiency conditions- A complex allelopathic alliance including endophytic Fusarium verticillioides. J. of Chem. Ecol., 33(2): 225-237.
[18]. Kunkel, B.A. and Grewal, P.S. (2003). Endophyte infection in perennial ryegrass reduces the susceptibility of black cutworm to an entomopathogenic nematode. Entomol. Exp. Appl., 107: 95-104.
[19]. Kusari, S., Lamshöft, M., Zühlke, S. and Spiteller, M. (2008). An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 71: 159-162.
[20]. Lamsal, K., Kim, S.W., Kim, Y.S. and Lee, Y.S. (2013). Biocontrol of Late Blight and plant growth promotion in Tomato using Rhizobacterial isolates. J. Microbiol. Biotechnol., 23: 897-904.
[21]. Li, Z., Li, S., Zhou, B., Yang, L. and Chen, Y. (2004). Antifungal activity of endophytic fungi from three pharmaceutical plants. J. Microbiol., 24: 35-37.
[22]. Maciá-Vicente, J.G., Rosso, L.C., Ciancio, A., Jansson, H.B. and Lopez-Llorca, L.V. (2009). Colonization of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann. Appl. Biol., 155: 391-401.
[23]. Malinowski, D.P. and Belesky, D.P. (2006). Ecological importance of Neotyphodium spp. Grass endophytes in agroecosystems. Grassland Science, 52(1): 1-14.
[24]. Mandyam, K. and Jumpponen, A. (2005). Abundance and possible functions of the root-colonising dark septate endophytic fungi. Studies in Mycology, 53: 173-189.
[25]. Mejía, L.C., Rojas, E.I., Maynard, Z., Van Bael, S., Arnold, A.E., Hebbar, P., Samuels, G.J., Robbins, N. and Herre, E.A. (2008). Endophytic fungi as biological agents of Theobroma cacao pathogens. Biol. Control, 46: 4-14.
[26]. Mercier, J. and Jiménez, J.I. (2009). Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. Biocontrol, 54: 797-805.
[27]. Odigie, E.E. and Ikotun, T. (1982). In vitro and in vivo inhibition of growth of Phytophthora palmivora by antagonistic microorganisms. Fitopatologia Brasileira., 7: 157 -167.
[28]. Petrini, O., Sieber, T.N., Toti, L. and Viret, O. (1992). Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins, 1: 185-196.
[29]. Redman, R.S., Freeman, S., Clifton, D.R., Morrel, J., Brown, G. and Rodriguez, R.J. (1999). Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of Colletotrichum magna. Plant Physiol., 119:795-804
[30]. Saikkonen, K., Faeth, S.H., Helander, M. and Sullivan, T.J. (1998). Fungal endophytes: A continuum of interactions with host plants. Annu. Rev. Ecol. Syst., 29:319–343.
[31]. Schulz, B., Boyle, C., Draeger, S., Römmert, A.K. and Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 106: 996-1004.
[32]. Shankar, M., Kurtboke, D.I. and Sivasithamparam, K. (1994). Nutritional and environmental factors affecting growth and antifungal activity of a sterile red fungus against Gaeumannomyces graminis var. tritici. Can. J. Bot., 72: 198-202.
[33]. Shentu, X.-P., Chen, L.-Z. and Yu, X.-P. (2007). Anti-fungi activities and cultural characteristics of gingko endophytic fungus No. 1028. Acta Phytophyl. Sin., 34: 147-152.
[34]. Skidmore, A.M., and Dickinson, C.H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Br. Mycol. Soc., 66: 57-64.
[35]. Strobel, G. and Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 67(4): 491-502.
[36]. Strobel, G.A. (2003). Endophytes as sources of bioactive products. Microbes Infect., 5: 535-544.
[37]. Subramanian, C.V. (1981). Hyphomycetes: An account of Indian species, except Cercosporae. ICAR Publication, New Delhi.
[38]. Suryanarayanan, T.S., Venkatesan, G. and Murali, T.S. (2003). Endophytic Fungal Communities in Leaves of Tropical Forest Trees: Diversity and Distribution Patterns. Current Science, 85: 489-93.
[39]. Thrower, L.B. and Lewis, D.H. (1973). Uptake of sugars by Epichloë typhina (Pers. Ex Fr.) Tul. In culture and from its host, Agrostis stolonifera L. New Phytologist, 72: 501-508.
[40]. Xu, L.-J., Zhou, L.-G., Zhao, J.-L. and Jiang, W.-B. (2008). Recent studies on the antimicrobial compounds produced by plant endophytic fungi. Nat. Prod. Res. Dev., 20: 731-740.
[41]. Yan, Z.-Y., Luo, J., Guo, X.-H., Zeng, Q.-Q. (2007). Screening of ginkgolides-producing endophytic fungi and optimal study on culture condition. Nat. Prod. Res. Dev., 19: 554-558. [In Chinese with English].
Published
2014-10-01
How to Cite
Myrchiang, P., Dkhar, M., & Devi, H. (2014). Studies on endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica (C.B. Clarke) Pamp. and their antagonistic activity against Phytophthora infestans. Journal of Advanced Laboratory Research in Biology, 5(4), 112-119. Retrieved from http://e-journal.sospublication.co.in/index.php/jalrb/article/view/202
Section
Articles