Effective Biosurfactants Production by Pseudomonas aeruginosa and its Efficacy on Different Oils

  • Sarita Kumari Department of Microbiology, The Oxford College of Science, Bangalore-102, India.
  • K. V. Sekar Department of Microbiology, The Oxford College of Science, Bangalore-102, India.
  • A. Nagasathya P.G. and Research Department of Microbiology, J.J. College of Arts and Science, Pudukkottai- 622404, India.
  • S. Palanivel P.G. and Research Department of Microbiology, J.J. College of Arts and Science, Pudukkottai- 622404, India.
  • Subramanyam Nambaru CAS in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India.
Keywords: Biosurfactant production, Pseudomonas aeruginosa, Test efficacy, Rhamnolipid

Abstract

A rhamnolipid producing bacterium, Pseudomonas aeruginosa was isolated from contaminated soil with oily wastes. The Pseudomonas aeruginosa grown with glucose and corn oil as a carbon source produced bio-surfactant. This biosurfactant was purified by procedures that included chloroform-ethanol extraction and 0.05M bicarbonate treatments. The active compound was identified as rhamnolipid by using thin layer chromatography. The emulsification activity of bio-surfactant, the coconut oil responded better than the olive oil, groundnut oil and sunflower oil and gave a maximum level of 1 cm.

Downloads

Download data is not yet available.

References

[1]. Cooper, D.G. and Zajic, J.E. (1980). Surface active compounds from microorganisms. Adv. Appl. Microbiol., 26: 229-253.
[2]. Cooper, D.G., MacDonald, C.R., Duff, S.J.B. and Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol., 42: 408-412.
[3]. Edwards, J. and Hayashi, J. (1965). Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys., 111: 415-421.
[4]. Guerra-Santos, L., Kappeli, O. and Fiechter, A. (1984). P. aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol., 48: 301-305.
[5]. Guerra-Santos, L., Kappeli, O. and Fiechter, A. (1986). Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Environ. Microbiol., 24: 443-448.
[6]. Haferburg, D. and Hommel, R. (1986). Adv. Biochem. Eng./ Biotechnol., 33: 53-93.
[7]. Hamilton, W.A. and Dawes, E.A. (1960). The nature of the diauxic effect with glucose and organic acids in Pseudomonas aeruginosa. Proc. Biochem. Soc. Biochem. J., 76: 70.
[8]. Harvey, S., Elashvili, I., Valdes, J.J., Kamely, D. and Chakrabarty, A.M. (1990). Enhanced removal of the Exxon Valdez spilled oil from the Alaskan gravel by a microbial surfactant. Bio/Technology, 8: 228-230.
[9]. Hirayama, T. and Kato, I. (1982). Novel rhamnolipids from P. aeruginosa. FEBS Lett., 139: 81-85.
[10]. Hisatsuka, K., Nakahara, T., Sano, N. and Yamada, K. (1971). Formation of rhamnolipid by Pseudomonas aeruginosa: its function in hydrocarbon fermentations. Agric. Biol. Chem., 35: 686-692.
[11]. Itoh, S., Honda, H., Tomita, F. and Suzuki, T. (1971). Rhamnolipid produced by Pseudomonas aeruginosa grown on n-paraffin. J. Antibiot., 24: 855-859.
[12]. Johnson, M.K. and Bose-Marrazzo, D. (1980). Production and properties of heat-stable extracellular haemolysin from Pseudomonas aeruginosa. Infect. Immun. 29: 1028-1033. Linhardt, R.J., Bakhit, R. and Daniels, L.1989. Microbially produced rhamnolipid as a source of rhamnose. Biotechnol. Bioeng., 33: 365-368.
[13]. Kappeli, O. and Finnerty, W.R. (1980). Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol. Bioeng., 22: 495-503.
[14]. Koch, A.K., Reiser, J., Kappeli, O. and Fiechter. A. (1988). Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Bio/Technology, 6: 1335-1339.
[15]. Mulligan, C.N. and Gibbs, B.F. (1989). Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 55: 3016-3019.
[16]. Parkinson, M. (1985). Biosurfactants. Biotech. Adv., 3: 65-83.
[17]. Rapp, P., Bock, H., Wray, V. and Wagner, F. (1979). Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol., 115: 491-503.
[18]. Reiling, H.E., Thanei-Wyes, U., Guerra-Santos, L., Hirt and Kappeli, O. (1985). Pilot production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 51: 985-989.
[19]. Robert, M., Mercade, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Manresa, M.A. and Guinea, J. (1989). Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T. Biotechnol. Lett., 11: 871-874.
[20]. Suzuki, T., Tanaka, H. and Itoh, H. (1974). Sucrose lipids of Arthrobacter, Corneybacterium and Nocardia grown on sucrose. Agric. Biol. Chem., 38: 557-563.
[21]. Swisher, R.D. (1970). Surfactant Biodegradation. Marcel Dekker, New York.
[22]. Van Dyke, Gulley, M.I.S.L., Lee, H. and Trevors, J.T. (1993). Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol., 11: 163-170.
[23]. Wagner, F., Bock, H., Kretschmer, A., Lang, S. and Syldatk, C. (1983). Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. p.55-60. In. J. E. Zajiic, D.G. Cooper, T. R. Jack and N. Kosaric (ed.), Microbial enhanced oil recovery. PennWell Publishing. Tucson, Ariz.
[24]. Zajiic, J.E. and Steffens, W. (1974). Biosurfactants. CRC Crit. Rev. Biotechnol., 1: 87-101.
Published
2010-07-01
How to Cite
Kumari, S., Sekar, K., Nagasathya, A., Palanivel, S., & Nambaru, S. (2010). Effective Biosurfactants Production by Pseudomonas aeruginosa and its Efficacy on Different Oils. Journal of Advanced Laboratory Research in Biology, 1(1), 31-34. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/10
Section
Articles