Effective Biosurfactants production by Pseudomonas aeruginosa and its efficacy on different Oils

  • Sarita Kumari Department of Microbiology, The Oxford College of Science, Bangalore-102, India.
  • K. V. Sekar Department of Microbiology, The Oxford College of Science, Bangalore-102, India.
  • A. Nagasathya P.G. and Research Department of Microbiology, J.J. College of Arts and Science, Pudukkottai- 622404, India.
  • S. Palanivel P.G. and Research Department of Microbiology, J.J. College of Arts and Science, Pudukkottai- 622404, India.
  • Subramanyam Nambaru CAS in Marine Biology, Annamalai University, Parangipettai, Tamil Nadu, India.
Keywords: Biosurfactant production, Pseudomonas aeruginosa, Test efficacy, Rhamnolipid

Abstract

A rhamnolipid producing bacterium, Pseudomonas aeruginosa was isolated from contaminated soil with oily wastes. The Pseudomonas aeruginosa has grown with glucose and corn oil as a carbon source produced biosurfactant. This biosurfactant was purified by procedures that included chloroform-ethanol extraction and 0.05M bicarbonate treatments. The active compound was identified as rhamnolipid by using thin layer chromatography. The biosurfactant efficacy was tested on coconut oil, groundnut oil, sunflower oil and olive oil. The coconut oil responded better and gave a maximum level of 1cm than the olive oil, groundnut oil and sunflower oil.

Downloads

Download data is not yet available.

References

[1]. Cooper, D.G. & Zajic, J.E. (1980). Surface-Active Compounds from Microorganisms. Adv. Appl. Microbiol., 26: 229–253. doi: 10.1016/S0065-2164(08)70335-6.
[2]. Cooper, D.G., Macdonald, C.R., Duff, S.J.B. & Kosaric, N. (1981). Enhanced production of Surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol., 42(3): 408-412.
[3]. Edwards, J.R. & Hayashi, J.A. (1965). Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys., 111(2): 415–421. doi: 10.1016/0003-9861(65)90204-3.
[4]. Guerra-Santos, L., Käppeli, O. & Fiechter, A. (1984). Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol., 48(2): 301-305.
[5]. Guerra-Santos, L.H., Käppeli, O. & Fiechter, A. (1986). Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol., 24(6): 443–448. doi: 10.1007/BF00250320.
[6]. Haferburg, D., Hommel, R.K., Claus, R. & Kleber, H.-P. (1986). Extracellular microbial lipids as biosurfactants. Adv. Biochem. Eng. / Biotechnol., 33: 53–93. doi: 10.1007/BFb0002453.
[7]. Hamilton, W.A. & Dawes, E.A. (1960). The nature of the diauxic effect with glucose and organic acids in Pseudomonas aeruginosa. Biochem. J., 76: 70 p.
[8]. Harvey, S., Elashvili, I., Valdes, J.J., Kamely, D. & Chakrabarty, A.M. (1990). Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Bio/Technology, 8(3): 228–230. doi: 10.1038/nbt0390-228.
[9]. Hirayama, T. & Kato, I. (1982). Novel methyl rhamnolipids from Pseudomonas aeruginosa. FEBS Lett., 139(1): 81–85. doi: 10.1016/0014-5793(82)80492-4.
[10]. Hisatsuka, K.-i., Nakahara, T., Sano, N. & Yamada, K. (1971). Formation of Rhamnolipid by Pseudomonas aeruginosa and its Function in Hydrocarbon Fermentation. Agricultural and Biological Chemistry, 35(5): 686–692. doi: 10.1080/00021369.1971.10859987.
[11]. Itoh, S., Honda, H., Tomita, F. & Suzuki, T. (1971). Rhamnolipids produced by Pseudomonas aeruginosa grown on n-paraffin (mixture of C12, C13 and C14 fractions). J. Antibiot., 24(12): 855–859. doi: 10.7164/antibiotics.24.855.
[12]. Johnson, M.K. & Boese-Marrazzo, D. (1980). Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect. Immun., 29(3): 1028-1033.
[13]. Linhardt, R.J., Bakhit, R., Daniels, L., Mayerl, F. & Pickenhagen, W. (1989). Microbially produced rhamnolipid as a source of rhamnose. Biotechnol. Bioeng., 33(3): 365–368. doi: 10.1002/bit.260330316.
[14]. Käppeli, O. & Finnerty, W.R. (1980). Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol. Bioeng., 22(3): 495–503. doi: 10.1002/bit.260220303.
[15]. Koch, A.K., Reiser, J., Käppeli, O. & Fiechter, A. (1988). Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Bio/Technology, 6(11): 1335–1339. doi: 10.1038/nbt1188-1335.
[16]. Mulligan, C.N. & Gibbs, B.F. (1989). Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 55(11): 3016–3019.
[17]. Parkinson, M. (1985). Bio-surfactants. Biotechnol. Adv., 3(1): 65–83. doi: 10.1016/0734-9750(85)90006-0.
[18]. Rapp, P., Bock, H., Wray, V. & Wagner, F. (1979). Formation, isolation and characterization of Trehalose Dimycolates from Rhodococcus erythropolis Grown on n-Alkanes. Microbiology, 115(2): 491–503. doi: 10.1099/00221287-115-2-491.
[19]. Reiling, H.E., Thanei-Wyss, U., Guerra-Santos, L.H., Hirt, R., Käppeli, O., & Fiechter, A. (1986). Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl. Environ. Microbiol., 51(5), 985–989.
[20]. Robert, M., Mercadé, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Manresa, M.A. & Guinea, J. (1989). Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T1. Biotechnol. Lett., 11(12): 871–874. doi: 10.1007/BF01026843.
[21]. Suzuki, T., Tanaka, H. & Itoh, S. (1974). Sucrose Lipids of Arthrobacteria, Corynebacteria and Nocardia Grown on Sucrose. Agr. Biol. Chem., 38(3): 557-563. doi: 10.1080/00021369.1974.10861203
[22]. Swisher, R.D. (1970). Surfactant Biodegradation. Marcel Dekker, New York.
[23]. Van Dyke, M.I., Gulley, S.L., Lee, H. & Trevors, J.T. (1993). Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J. Ind. Microbiol., 11(3): 163–170. doi: 10.1007/BF01583718.
[24]. Wagner, F., Behrendt, U., Bock, H., Kretschmer, A., Lang, S. & Syldatk, C. (1983). Production and chemical characterisation of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. In: Zajic, J.E., Cooper, D.G., Jack, T.R., Kosaric, N. (Eds.), Microbial Enhanced Oil Recovery, PennWell Books, Tulsa, Oklahoma, pp. 55–60,
[25]. Zajic, J.E., & W. Steffens, (1984). Biosurfactants. Crit. Rev. Biotechnol., 1:87–107.
Published
2010-07-01
How to Cite
Kumari, S., Sekar, K., Nagasathya, A., Palanivel, S., & Nambaru, S. (2010). Effective Biosurfactants production by Pseudomonas aeruginosa and its efficacy on different Oils. Journal of Advanced Laboratory Research in Biology, 1(1), 31-34. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/10
Section
Articles
Abstract viewed = 95 times, PDF downloaded = 22 times