Effect of L-Ascorbic Acid on the Glycogen Contents during Mercury Intoxication in the Freshwater Bivalve, Parreysia cylindrica


  • Anilkumar Pardeshi P.G. Department of Zoology, Deogiri College, Aurangabad-431005, Maharashtra (India).
  • S. P. Zambare Department of Zoology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, Maharashtra (India).


Mercury, Ascorbic acid, glycogen, bivalve


Freshwater bivalve, Parreysia cylindrica was exposed to acute (0.6 ppm) and chronic (0.12 ppm) doses of HgCl2 and HgCl2 with several concentrations of ascorbic acid. Glycogen contents from mantle, foot, gills, gonads and digestive glands were estimated after 24 hours and 96 hours of acute and 7 days and 21 days of chronic exposure from each group of test animals. Depletion of glycogen contents in different tissues caused due to mercury stress was much more as compared to those exposed to HgCl2 with ascorbic acid.


Download data is not yet available.


Alam, S.M. (1984). Some aspects of physiology of Viviparus bengalensis. Ph.D. Thesis, Marathwada University, Aurangabad (MS), India.

Bayne, B.L. & Thompson, R.J. (1970). Some physiological consequences of keeping Mytilus edulis in the laboratory. Helgoländer Wiss. Meeresunters., 20(1): 526–552. https://doi.org/10.1007/BF01609927.

Bhagyalaxmi, A. (1981). Physiological studies on the fresh water field crab Oziotelphusa (Paratelphusa) senex senex (Fabricius) in relation to pesticide impact. Ph.D. Thesis, Sri Venkateswara University, Tirupati, A.P.

Bhattacharjee, C.R., Dey, S. & Goswami, P. (2003). Protective role of ascorbic acid against lead toxicity in blood of albino mice as revealed by metal uptake, lipid profiles, and ultrastructural features of erythrocytes. Bull. Environ. Contam. Toxicol., 70(6): 1189–1196. https://doi.org/10.1007/s00128-003-0108-z.

Halver, J.E. (1972). The Role of Ascorbic Acid in Fish Disease and Tissue Repair. Nippon Suisan Gakkaishi, 38(1): 79-92. https://doi.org/10.2331/suisan.38.79.

Chinoy, N.J. (1978). Ascorbic acid turnover in animal and human tissues. J. Anim. Morphol. Physiol. (Silver Jubilee Volume): 68–85.

Clarke, D.H. (1975). Exercise Physiology. New Jersey: Prentice Hall Inc., Englewood Cliffs.

Clarkson, T.W., Hursh, J.B., Sager, P.R. & Syversen, T.L.M. (1988). Mercury. In: Clarkson, T.W., Friberg, L., Nordberg, G.F. & Sager, P.R. (eds), Biological monitoring of toxic metals. Plenum Press, New York, pp 199–246.

De Zwaan, A. & Zandee, D.I. (1972). The utilization of glycogen and accumulation of some intermediates during anaerobiosis in Mytilus edulis L. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 43(1): 47–54. https://doi.org/10.1016/0305-0491(72)90200-3.

Galtsoff, P.S. (1964). The American Oyster, Crassostrea virginica Gmelin. Fishery Bulletin, U.S. Fish and Wildlife Service, 64: 1-480.

Gill, T.S. & Pant, J.C. (1981). Effect of sublethal concentrations of mercury in a teleost Puntius conchonius: biochemical & haematological responses. Indian J. Exp. Biol., 19(6): 571–573.

Griffiths, H.R. & Lunec, J. (2001). Ascorbic acid in the 21st century – more than a simple antioxidant. Environ. Toxicol. Pharmacol., 10(4): 173–182. https://doi.org/10.1016/S1382-6689(01)00081-3.

Lewin, S. (1976). Vitamin C: Its Molecular Biology and Medical Potential. Academic Press, London. 231 pp.

Lomte, V.S. & Alam, S. (1982). Changes in the biochemical components of the prosobranch, Bellamia (Viviparous) bengalensis on exposure to malathion. Proc. Symp. Physiol. Resp. Ani. Pollutants. Marathwada University, Aurangabad, India.

Lomte, V.S. & Deshmukh, M. (1996). Effect of HgCl2 on glycogen metabolism in freshwater bivalve, Parreysia corrugata. Dr. B.A.M. University, J., 27: 123-130.

Mahajan, A.Y. & Zambare, S.P. (2001). Effect of Salts of Copper and Mercury on Oxygen Consumption of the Freshwater Bivalve Corbicula Striatella. Ecol. Environ. Conserv., 7: 71-73.

Navarro, S. & Friendlander, A. (1975). The effect of carbon dioxide anesthesia on the lactate and pyruvate levels in the hemolymph of Ephestia cautella (Wlk.) pupae. Comp. Biochem. Physiol. B, 50(1): 187–189. https://doi.org/10.1016/0305-0491(75)90320-x.

Rao, M.V. (1989). Histophysiological changes of sex organs in methylmercury intoxicated mice. Endocrinol. Exp., 23(1): 55–62.

Rao, M.V. & Chinoy, N.J. (1986). Effect of estradiol benzoate on rat testis and adrenal. Exp. Clin. Endocrinol., 88(2): 181–184. https://doi.org/10.1055/s-0029-1210594.

Rao, M.V., Mehta, A.R. & Patil, J.S. (1994). Ascorbate effect on methylmercury toxicity in reproductive organs of male Guinea pigs. Indian J. Environ. Toxicol., 4(2): 53-58.

Simon, J.A. & Hudes, E.S. (1999). Relationship of ascorbic acid to blood lead levels. JAMA, 281(24): 2289–2293. https://doi.org/10.1001/jama.281.24.2289.

Salánki, J., V.-Balogh, K. & Berta, E. (1982). Heavy metals in animals of Lake Balaton. Water Res., 16(7): 1147–1152. https://doi.org/10.1016/0043-1354(82)90132-4.

Turner, L.V. & Manchester, K.L. (1972). Effects of denervation on the glycogen content and on the activities of enzymes of glucose and glycogen metabolism in rat diaphragm muscle. Biochem. J., 128(4): 789–801. https://doi.org/10.1042/bj1280789.

WHO (1980). WHO laboratory Manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction. 1st edition. Singapore: Press Concern.




How to Cite

Pardeshi, A., & Zambare, S. P. (2012). Effect of L-Ascorbic Acid on the Glycogen Contents during Mercury Intoxication in the Freshwater Bivalve, Parreysia cylindrica. Journal of Advanced Laboratory Research in Biology, 3(3), 190–194. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/124