Optimization of Extracellular Keratinase Production by Aspergillus terreus Isolated from Chicken's Litter

  • Mostafa Koutb Umm Al-Qura University, Faculty of Applied Science, Biology Department, Mecca, Saudi Arabia.
  • Fatthy Mohamed Morsy Botany Department, Faculty of Science, Assiut University, Assiut-71516, Egypt.
  • Magdy Mohamed Khalil Bagy Botany Department, Faculty of Science, Assiut University, Assiut-71516, Egypt.
  • Elhagag Ahmed Hassan Botany Department, Faculty of Science, Assiut University, Assiut-71516, Egypt.
Keywords: Aspergillus terreus, Chicken's litter, Fungi, Keratinase production

Abstract

In this current study 45 fungal isolates were isolated from chicken's litter on Feather Agar Medium (FAM) were screened for determining the potent keratinase producing isolates. Out of these fungal isolates, twelve species and one species variety exhibited various degrees of keratinolytic activities from which A. terreus showed the highest keratinase production (12.6U/ml). The optimum temperature and initial pH for keratinase production by A. terreus were 40°C and 8, respectively. The highest keratinase production was observed for a period 25 days. The optimum ionic strength for the enzyme production was 80mM NaCl. Deprivation of K+, Fe2+, Mg2+, Ca2+ or Zn2+ from the culture medium drastically reduced the keratinase production by A. terreus. In contrast, sulfur deprivation did not significantly affect the keratinase production. The Km and Vmax values for A. terreus keratinase were 8.64mg keratin and 56.7U/mg proteins, respectively. The optimum temperature, pH and ionic strength for keratinase activity were 35°C, 7.8 and 80-100mM NaCl, respectively.

Downloads

Download data is not yet available.

References

[1]. Godfrey, T. (1996). Protease in wastes treatment. In: Industrial Enzymology, ed. Godfrey, T. and West, S. pp. 315–316. London: Macmillan Press Ltd.
[2]. Birch, G.G., Parler, K.J. & Worgan, J.T. (1976). Food from waste. In: Enzyme and food processing. London: Applied Science, pp. 19–65.
[3]. Chessen, A. (1990). Improving the nutritional value of feeds for pigs and poultry with enzyme supplement-current benefits and future prospects. In: Enzymes in der Tierernahrung. pp. 25–37. Zurich: Institut fur Nutzlierwissenchaften.
[4]. Friedrich, A.B. & Antranikian, G. (1996). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order thermotogales. Appl. Environ. Microbiol., 62: 2875–2882.
[5]. El-Naghy, M.A., El-Ktatny, M.S., Fadl-Allah, E.M. & Nazeer, W.W. (1998). Degradation of chicken feathers by Chrysosporium georgiae. Mycopath., 143: 77–84.
[6]. Onifade, A.A., Al-Sane, N.A., Al-Musallam, A.A. & Al-Zarban, S. (1998). A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresour. Technol., 66: 1–11.
[7]. Riessen, S. & Antranikian, G. (2001). Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremoph., 5: 399–408.
[8]. Nam, G.W., Lee, D.W., Lee, H.S., Lee, N.J., Kim, B.C., Choe, E.A., Hwang, J.K., Suhartono, M.T. & Pyun, Y.R. (2002). Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase producing thermophilic anaerobe. Arch. Microbiol., 178: 538–547.
[9]. Santos, R.M.D.B., Firmino, A.A.P., de Sa, C.M. & Felix, C.R. (1996). Keratinolytic activity of Aspergillus fumigatus Fresenius. Curt. Microbiol., 33: 364-370.
[10]. Farag, A.M. & Hassan, M.A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enz. Microb. Technol., 34: 85–93.
[11]. Cao, L., Tan, H., Liu, Y., Xue, X. & Zhou, S. (2008). Characterization of a new keratinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett. Appl. Microbiol., 46: 389–394.
[12]. Gradisar, H., Kern, S. & Friedrich, J. (2000). Keratinase of Doratomyces microsporus. Appl. Microbiol. Biotechnol., 53: 196–200.
[13]. Moreira-Gasparin, F.G., de Souza, C.G., Costa, A.M., Alexandrino, A.M., Bracht, C.K., Boer, C.G., Peralta, R.M. (2009). Purification and characterization of an efficient poultry feather degrading-protease from Myrothecium verrucaria. Biodegrad., 20: 727–736.
[14]. Gradisar, H., Friedrich, J., Krizaj, I. & Jerala, R. (2005). Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol., 71: 3420–3426.
[15]. Anbu, P., Gopinath, S.C.B., Hilda, A., Lakshmi, P.T. & Annadurai, G. (2005). Purification of keratinase from poultry farm isolate-Scopulariopsis brevicaulis and statistical optimization of enzyme activity. Enz. Microbiol. Technol., 36: 639-647.
[16]. Marcondes, N.R., Taira, C.L., Vandresen, D.C., Svidzinski, T.I., Kadowaki, M.K. & Peralta, R.M. (2008). New feather-degrading filamentous fungi. Microb. Ecol., 56: 13-17.
[17]. Yu, R.J., Harmon, S.R. & Blank, F. (1968). Isolation and purification of an extracellular keratinase of Trichophyton mentagrophytes. J. Bacteriol., 96: 1435-1436.
[18]. Muting, D. & Kaiser, E. (1963). Spectrophotometric method of determining of α-amino-N in biological materials by means of the ninhydrin reaction. Hoppe-Seyler's Zeitschrift für Physiologische Chemie, 332:276–289.
[19]. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt. Biochem., 72: 248-254.
[20]. Bertsch, A. & Coello, N. (2005). A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Biores. Technol., 96: 1703-1708.
[21]. Gupta, R. & Ramnani, P. (2006). Microbial keratinases and their prospective applications: an Overview. Appl. Microb. Biotechnol., 70: 21–33.
[22]. Veselá, M. & Friedrich, J. (2009). Amino Acid and Soluble Protein Cocktail from Waste Keratin Hydrolysed by a Fungal Keratinase of Paecilomyces marquandii. Biotechnol. Bioproc. Engin., 14: 84- 90.
[23]. Venter, H., Osthoff, G. & Litthauer, D. (1999). Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Expr. Purif., 15: 282–295.
[24]. Kumar, C.G. & Takagi, H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol. Adv., 17: 561–594.
[25]. Qin, L.M., Dekio, S., Jidoi, J. (1992). Some biochemical characteristics of a partially purified extracellular keratinase from Trichophyton schoenleinii. Zentralbl Bakteriol., 277:236–244.
[26]. Moallaei, H., Zaini, F., Larcher, G. Beucher, B. & Bouchara, J.P. (2006). Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopath., 161: 369-375.
[27]. Malviya, H.K., Rajak, R.C. & Hasija, S.K. (1992). Purification and partial characterization of two extracellular keratinases of Scopulariopsis brevicaulis. Mycopath., 119: 161–165.
[28]. Anbu, P., Hilda, A., Sur, H., Hur, B. & Jayanthi, S. (2008). Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Intern. Biodeterior. Biodegrad., 62: 287-292.
Published
2012-07-01
How to Cite
Koutb, M., Morsy, F., Bagy, M., & Hassan, E. (2012). Optimization of Extracellular Keratinase Production by Aspergillus terreus Isolated from Chicken’s Litter. Journal of Advanced Laboratory Research in Biology, 3(3), 210-216. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/128
Section
Articles
Abstract viewed = 69 times, PDF downloaded = 20 times