Immobilization Parameters Statistically Optimized for Whole Cells of Pseudomonas putida G7 to Enhance Limonin Biotransformation


  • Meenakshi Malik Department of Biotechnology and Environmental Sciences, Thapar University, Patiala-147004, Punjab, India.
  • Moushumi Ghosh Department of Biotechnology and Environmental Sciences, Thapar University, Patiala-147004, Punjab, India.


Response Surface Methodology, Central Composite Design, Na-alginate, Cell load, Bead diameter


This study was aimed for optimizing the immobilization parameters for Pseudomonas putida G7 in Ca-alginate beads, in order to establish a debittering strategy for citrus juices, by biotransforming the bitter principle - Limonin. Response Surface Methodology (RSM) with Central Composite Design (CCD) was employed to model the significant parameters for an enhanced response. An enhanced limonin bioconversion and immobilized bead stability was obtained with alginate concentration (2%), cell load (47.2g/l), and a bead diameter (2.1mm); which had significant effects (p <0.001) on limonin biotransformation. The R2 values of 0.9 showed good agreement between experimental and predicted response. Validation experiments under optimized parameters showed good association between experimental (limonin biotransformation and stability response of 65.8% and 0.97 OD respectively) and predicted responses (limonin biotransformation and stability of 65.1% and 0.094 respectively). Thus, the approach is promising to develop a strategy for debittering citrus juices by biotransforming limonin at a faster rate.


Download data is not yet available.


Krasaekoopt, W., Bhandari, B. & Deeth, H. (2003). Evaluation of encapsulation techniques of probiotics for yoghurt. Int. Dairy J., 13(1): 3–13.

Birgisson, H., Wheat, J.O., Hreggvidsson, G.O., Kristjansson, J.K. & Mattiasson, B. (2007). Immobilization of a recombinant Escherichia coli producing a thermostable α-l-rhamnosidase: Creation of a bioreactor for hydrolyses of naringin. Enzyme Microb. Technol., 40(5): 1181–1187.

Karel, S.F., Libicki, S.B. & Robertson, C.R. (1985). The immobilization of whole cells: Engineering principles. Chem. Eng. Sci., 40(8): 1321–1354.

Hsiau, L.-T., Lee, W.-C. & Wang, F.-S. (1997). Immobilization of whole-cell penicillin G acylase by entrapping within polymethacrylamide beads. Appl. Biochem. Biotechnol., 62(2): 303–315.

Babu, P.S.R. & Panda, T. (1991). Studies on improved techniques for immobilizing and stabilizing penicillin amidase associated with E. coli cells. Enzyme Microb. Technol., 13(8): 676–682.

Bernal, V., Sevilla, A., Cánovas, M. & Iborra, J.L. (2007). Production of L-carnitine by secondary metabolism of bacteria. Microb Cell Fact., 6: 31–48.

Hasegawa, S. & Maier, V.P. (1983). Solutions to the limonin bitterness problem of citrus juices [Triterpene derivatives]. Food Technol., 37: 73–77.

Cánovas, M., García-Cases, L. & Iborra, J. (1998). Limonin consumption at acidic pH values and absence of aeration by Rhodococcus fascians cells in batch and immobilized continuous systems. Enzyme Microb. Technol., 22(2): 111–116.

Sun, C., Chen, K., Chen, Y. & Chen, Q. (2005). Contents and antioxidant capacity of limonin and nomilin in different tissues of citrus fruit of four cultivars during fruit growth and maturation. Food Chem., 93(4): 599–605.

Roy, A. & Saraf, S. (2006). Limonoids: Overview of significant bioactive triterpenes distributed in plants kingdom. Biol. Pharm. Bull., 29(2): 191–201.

Cánovas, M., García-Cases, L. & Iborra, J.L. (1996). pH influence on the consumption of limonin species by Rhodococcus fascians cells. Biotechnol. Lett., 18(4): 423–428.

Willaert, R.G., De Backer, L. & Baron, G.V. (1996). Mass transfer in immobilised cell systems. In: Willaert, R.G., Baron, G.V. & De Backer, L. (eds), Immobilised living cell systems: Modelling and experimental methods. John Wiley & Sons, Chichester, England, pp 21–45.

Gervais, T.R., Carta, G. & Gainer, J.L. (2003). Asymmetric synthesis with immobilized yeast in organic solvents: equilibrium conversion and effect of reactant partitioning on whole cell biocatalysis. Biotechnol. Prog., 19(2): 389–395.

Li, Y.G., Xing, J.M., Xiong, X.C., Li, W.L., Gao, H.S. & Liu, H.Z. (2008). Improvement of biodesulfurization activity of alginate immobilized cells in biphasic systems. J. Ind. Microbiol. Biotechnol., 35(3): 145–150.

Garikipati, S.V.B.J., McIver, A.M. & Peeples, T.L. (2009). Whole-Cell Biocatalysis for 1-Naphthol Production in Liquid-Liquid Biphasic Systems. Appl. Environ. Microbiol., 75(20): 6545–6552.

Dwevedi, A. & Kayastha, A.M. (2009). Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresour. Technol., 100(10): 2667–2675.

Lee, J.-H., Chae, M.-S., Choi, G. H., Lee, N.-K. & Paik, H.-D. (2009). Optimization of Medium Composition for Production of the Antioxidant Substances by Bacillus polyfermenticus SCD Using Response Surface Methodology. Food Sci. Biotechnol., 18(4): 959–964.

Potumarthi, R., Subhakar, Ch., Pavani, A. & Jetty, A. (2008). Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods. Bioresour. Technol., 99(6): 1776–1786.

Göksungur, Y., Dağbağlı, S., Uçan, A. & Güvenç, U. (2005). Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J. Chem. Technol. Biotechnol., 80(7): 819–827.

Roig, M.G., Pedraz, M.A., Sanchez, J.M., Huska, J. & Tóth, D. (1998). Sorption isotherms and kinetics in the primary biodegradation of anionic surfactants by immobilized bacteria:: II. Comamonas terrigena N3H. J. Mol. Catal. B: Enzym., 4(5): 271–281.

Tapingkae, W., Parkin, K.L., Tanasupawat, S., Kruenate, J., Benjakul, S. & Visessanguan, W. (2010). Whole cell immobilisation of Natrinema gari BCC 24369 for histamine degradation. Food Chem., 120(3): 842–849.

Vaks, B. & Lifshitz, A. (1981). Debittering of orange juice by bacteria which degrade limonin. J. Agric. Food Chem., 29(6): 1258–1261.

Ertan, F., Yagar, H. & Balkan, B. (2007). Optimization of α‐Amylase Immobilization in Calcium Alginate Beads. Prep. Biochem. Biotechnol., 37(3): 195–204.

Zhang, C.-H., Ma, Y.-J., Yang, F.-X., Liu, W. & Zhang, Y.-D. (2009). Optimization of medium composition for butyric acid production by Clostridium thermobutyricum using response surface methodology. Bioresour. Technol., 100(18): 4284–4288.

Lu, L., Zhao, M. & Wang, Y. (2007). Immobilization of Laccase by Alginate–Chitosan Microcapsules and its Use in Dye Decolorization. World J. Microbiol. Biotechnol., 23(2): 159–166.

Ürküt, Z., Daǧbaǧlı, S. & Göksungur, Y. (2007). Optimization of pullulan production using Ca-alginate-immobilized Aureobasidium pullulans by response surface methodology. J. Chem. Technol. Biotechnol., 82(9): 837–846.

Niladevi, K.N. & Prema, P. (2008). Immobilization of laccase from Streptomyces psammoticus and its application in phenol removal using packed bed reactor. World J. Microbiol. Biotechnol., 24(7): 1215–1222.

Elibol, M. & Moreira, A.R. (2003). Production of extracellular alkaline protease by immobilization of the marine bacterium Teredinobacter turnirae. Process Biochem., 38(10): 1445–1450.

Iborra J.L., Manjón A. & Cánovas M. (1997). Immobilization in Carrageenans. In: Bickerstaff, G.F. (eds), Immobilization of Enzymes and Cells. Methods in Biotechnology, vol 1. Humana Press. pp. 53–60.




How to Cite

Malik, M., & Ghosh, M. (2012). Immobilization Parameters Statistically Optimized for Whole Cells of Pseudomonas putida G7 to Enhance Limonin Biotransformation. Journal of Advanced Laboratory Research in Biology, 3(4), 266–275. Retrieved from