Effect of Mercuric Chloride on Hepatic Phosphatases and Transaminases in Albino Rat


  • K. Mahour Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B. R. Ambedkar University, Agra-282002, India.
  • P. N. Saxena Toxicology Laboratory, Department of Zoology, School of Life Sciences, Khandari Campus, Dr. B. R. Ambedkar University, Agra-282002, India.


AST, ALT, ALP, ACP, Rattus norvegicus


Mercuric chloride is a serious health hazard and produces various disorders. However, phosphatases and transaminases are marker enzymes of hepatic toxicity. Twenty four adult albino rats have taken and divided into 4 groups. Group one for acute study, while three for subacute studies with 3 rats in each. Control was also taken with similar references. Mercuric chloride gave orally administered (LD50=9.26mg/kg b.w.) by gavage tube with distilled water. Rats were autopsized at predetermined time interval to assess hepatic toxicity. Phosphatases include alkaline phosphatase and acid phosphatase while transaminases include alanine transaminase and aspartate aminotransferase. Results revealed that ALP and ACP were significantly increased after acute and subacute treatment due to the destruction of the cell membrane of lysosomes. However, AST and ALT were also increased significantly due to toxic effect of mercuric chloride on hepatic cells. Hence, the present study demonstrates that mercuric chloride produces hepatic toxicity in the form of elevation of phosphatases and transaminases enzyme level.


Download data is not yet available.


[1]. Berlin, M. (1987). Mercury In: Friberg, L., Nordberg, G.F., Vostal (Eds). Handbook on the toxicology of metals. Elsevier Science, Amsterdam, pp. 387-445.
[2]. Hijova, E., Nistiar, F. and Sipulova, A. (2005). Changes in ascorbic acid and malondialdehyde in rats after exposure to mercury. Bratisl. Lek. Listy., 106 (8-9):248-251.
[3]. Clausen, J. (1993). Mercury and multiple sclerosis. Acta. Neurol. Scand., 87:461-464.
[4]. Hua, M.S., Huang, C.C. and Yang, Y.J. (1996). Chronic elemental mercury intoxication: neuropsychological follow-up case study. Brian. Inj., 10:377-384.
[5]. Longauer-Lewowicka, H., Zajac-Nedza, M. (1997). Changes in nervous system due to occupation metallic mercury poisoning. Neurol. Neurochir. Polska, 31:905-913.
[6]. Deleu, D., Hanssens, V., Al Salmy, H.S., Hastie, I. (1998). Peripheral polyneuropathy due to chronic use of topical ammoniated mercury. J. Toxicol. Clin. Toxicol., 36:233-237.
[7]. Gasso, S., Sunol, C., Sanfellu, C., Rodriguez-Farre, E., Cristofol, R.M. (2000). Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices. Life Sci., 67:1219-1231.
[8]. Saxena, P.N. and Mahour, K. (2006). Haematological alteration followed by mercuric chloride intoxication in albino rat. Ind. J. Environ. Toxicol., 16 (1):23-26.
[9]. Mahour, K. and Saxena, P.N. (2009). Assessment of haematotoxic potential of mercuric chloride in rat. J. Environ. Biol., 30 (5/6).
[10]. Goyer, R.A. (1991). Toxic effects of metals In: Amdur, M.O., Doull, J., Klaassen, C.D. (Eds). The basic Sciences of poisons. Casarett and Doull’s Toxicology. Pergamon Press, NY, pp. 629-681.
[11]. Finney, D.J. (1971). Probit analysis, Cambridge University Press, New York, pp. 303.
[12]. National Institutes of Health (NIH). Guide for the care and use of Laboratory Animals. NIH Publication No 85-23, Bethesda, USA, (1985).
[13]. Kind, P.R.N. and King, E.J. (1954). Estimation of Plasma Phosphatase by Determination of Hydrolysed Phenol with Amino-antipyrine. J. Clin. Pathol., 7: 322-326.
[14]. Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Amer. J. Clin. Pathol., 28:56-63.
[15]. Fisher, R.A. and Yates, F. (1950). Statistical methods for research workers, 12th ed. Pp.365 Oliver and Boyd. Edinburgh.
[16]. Mitra, S. and Sur, R.K. (1997). Hepatoprotection with Glycosmis pentaphylla (Retz). Ind. J. Exp. Biol., 35: 1306-1309.
[17]. Janbaz, K.H. and Gilani A.H. (2000). Studies on preventive and curative effects of berberine on chemical-induced hepatotoxicity in rodents. Fitotherapia, 71:25-33.
[18]. Hukkeri, V.I., B. Jaiprakash, M.S., Lavhale, R.V. Karadi and Kuppast, I.J. (2003). Hepatoprotective Activity of Ailanthus excelsa Roxb. Leaf Extract on Experimental Liver Damage in Rats. Ind. J. Pharm. Edu., 37(2): 105-106.
[19]. Nair, S.P. (2006). Protective Effect of Tefroli - a polyherbal mixture (Tonic) on cadmium chloride induced hepatotoxic rats. Phcog. Mag., 2(6):112-118.
[20]. Mehra, M. and Kanwar, K.C. (1986). Enzyme changes in the brain, liver and kidney following repeated administration of mercuric chloride. J. Environ. Pathol. Toxicol. Oncol., 7(1-2):65-71.
[21]. Dikshith, T.S.S. and Raizada, R.B. (1983). Response of Carbon Tetrachloride Pretreated Rats to Endosulfan, Carbaryl and Phosphamidon. Ind. Hlth., 21:263-271.
[22]. Johri, S., S. Srivastava, P. Sharma and Shukla, S. (2004). Analysis of time-dependent recovery from beryllium toxicity following chelation therapy and antioxidant supplementation. Ind. J. Exp. Biol., 42: 798-802.
[23]. Abou-Seif, M.A., El-Naggar, M.M., El-Far, M., Ramadan, M., Salah, N. (2003). Prevention of biochemical changes in gamma-irradiated rats by some metal complexes. Clin. Chem. Lab. Med., 41(7):926-933.
[24]. Moss, D.W., A.R. Henderson and Kochmor, J.F. (1986). Enzymes principles of diagnostic enzymology and the aminotransferase. In: Textbook of clinical chemistry. Saunders, Philadelphia, pp.663-678.
[25]. Manjusha, K.M. Patil, G.N. Zambare, K.R. Khandelwal and Bodhankar, S.L. (2004). Hepatoprotective activity of aqueous extract of leaves of Feronia elephantum Correa. Against thioacetamide and allyl alcohol intoxication in rats. Toxic. Int., 11(2):69-74.
[26]. Adolph, L. and Lorenz, R. (1978). Enzyme diagnostics bei Herz- b Leber and Pankreaserkrankungen, Basel, Switzerland, pp.7581.
[27]. Biswas, S.J. and Khuda Bukhsh, A.R. (2004). Evaluation of protective potentials of a potentized homeopathic drug, Chelidonium majus, during azo dye induced hepatocarcinogenesis in mice. Ind. J. Exp. Biol., 42: 698-712.
[28]. Despande, U.K., S.G. Gadre, A.S. Raste, D. Pillai, S.V. Bhinde and Samuel, A.M. (1998). Ind. J. Exp. Biol., 36: 573-577.
[29]. Goetz, W. (1980). Diagnostic Von Lebererkrankungen, Darmstadt, Germany, pp. 85-91.
[30]. Janbaz, K.H., S.A. Saeed and Gilani, A.H. (2003). Hepatoprotective Effect of Thymol on Chemical-induced Hepatotoxicity in Rodents. Pak. J. Biol. Sci., 6(5): 448-451.
[31]. Kumar, A. and Kumar, A. (2004). J. Exp. Zool. Ind., 7(1): 173-177.
[32]. Kumar, M., M.K. Sharma and Kumar, A. (2005). Spirulina fusiformis: A food supplement against mercury-induced hepatic toxicity. J. Health Sci., 51(4):424-430.
[33]. Rathore, H.S. and Varghese, J. (1994a). Effect of mercuric chloride on the survival, food intake, body weight, histological and haematological changes in mice and their presentation with Liv-52. Ind. J. Occupl. Hlt. 37(2): 42-54.
[34]. Saxena, P.N. and Mahour, K. (2006). Analysis of hepatoprotection by Panax ginseng following mercuric chloride intoxication in albino rat. Proceedings of the 9th international symposium on Ginseng, Seoul, South Korea.
[35]. Zaman, R.U. and Ahmad M. (2004). Evaluation of Hepatoprotective Effects of Raphanas sativus L. J. Biol, Sci., 4(4): 463-469.




How to Cite

Mahour, K., & Saxena, P. N. (2012). Effect of Mercuric Chloride on Hepatic Phosphatases and Transaminases in Albino Rat. Journal of Advanced Laboratory Research in Biology, 3(4), 319–322. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/151