Bacillus thuringiensis var. aizawai HD-137 as a Potential Agent for Biological Control


  • Samia A. Abdal-Aziz City of Scientific Research and Technology Applications, Genetic Engineering and Biotechnology Research Institute, Nucleic Acids Research Department, Alexandria, Egypt.
  • Ahmed A.M. Yassein Genetics Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt.


Bacillus thuringiensis HD-137, Chitinase, Antagonism, Phylogenetic


Four strains of Bacillus thuringiensis were screened for their chitinolytic activity on colloidal chitin. B. thuringiensis var. aizawai HD-137 with the GenBank accession number HM173355 showed the highest chitinase activity, which was recorded after 2 days of incubation. The optimum condition for high chitinase production was Nutrient Yeast extract, Salt Medium, NYSM, with 0.2% colloidal chitin, two days of incubation, pH 6 and 30°C. The novel strain B. thuringiensis var. aizawai HD-137 is also considered as a powerful phytopathogenic control agent in which it showed inhibition of the mycelial growth of some phytopathogenic fungi, Alternaria solani, Rhizopus B1 and B2, Fusarium solani and Aspergillus flavus. The clear zones of mycelial inhibition ranged from 12 to 19mm. The partial nucleotides sequence of chitinase gene from B. thuringiensis var. aizawai HD-137 showed similarities to the chitinase producing bacteria in the GenBank, and it was more related to B. thuringiensis (AB699714, GQ921840 and GQ921842) and B. ehimensis chi60 (AB110081). It is obvious that the B. thuringiensis var. aizawai HD-137 is considered as a significant biocontrol agent against phytopathogenic fungi.


Download data is not yet available.

Author Biography

Samia A. Abdal-Aziz, City of Scientific Research and Technology Applications, Genetic Engineering and Biotechnology Research Institute, Nucleic Acids Research Department, Alexandria, Egypt.


[1]. Zhong, W.F., Fang, J.C., Cai, P.Z., Yan, W.Z., Wu, J., Guo, H.F. (2005). Cloning of the Bacillus thuringiensis serovar sotto chitinase (Schi) gene and characterization of its protein. Genet. Mol. Biol., 28(4): 821-826.
[2]. Sampson, M.N., Gooday, G.W. (1998). Involvement of chitinase of Bacillus thuringiensis during pathogenesis in insect. Microbiol., 144: 2189-2194.
[3]. Liu, M., Cai, O.X., Zhang, B.H., Yan, J.P., Yuan, Z.M. (2002). Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J. Appl. Microbiol., 93: 374-379.
[4]. Abdal-Aziz, S.A. (1999). Ph.D. Thesis. Faculty of Science, Ain Shams University, Cairo, Egypt.
[5]. Lin, Y., Xiong, G. (2004). Molecular cloning and sequence analysis of the chitinase gene from Bacillus thuringiensis serovar alesti. Biotechnol. Lett., 26: 635-639.
[6]. Ding, X., Luo, Z., Xia, L., Gao, B., Sun, Y., Zhang, Y. (2008). Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr. Microbiol., 56: 442–446.
[7]. Hu, S., Zhang, X., Li, Y., Ding, X., Hu, X., Yang, Q., Xia, L. (2013). Constructing Bacillus thuringiensis strain that co-expresses Cry2Aa and chitinase. Biotechnol. Lett., 35(7): 1045-1051.
[8]. Joung K.B., Côté J.C. (2002). A single phylogenetic analysis of Bacillus thuringiensis strains and bacilli species inferred from 16S rRNA gene restriction fragment length polymorphism is congruent with two independent phylogenetic analyses. J. Appl. Microbiol., 93(6): 1075-82.
[9]. Martin, G.R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA, 78: 7634-7638.
[10]. Wiwat, C., Thaithanun, S., Pantuwatana, S., Bhumiratana, A. (2000). Toxicity of chitinase-producing Bacillus thuringiensis ssp. Kurstaki HD-1 (G) toward Plutella xylostella. J. Invertebr. Pathol., 76: 270-277.
[11]. Reissig, J.L., Storminger, J.L., Leloir, L.F. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. J. Bio. Chem., 217: 959-966.
[12]. Shanmuga, P.K., Gnanamani, A., Radhakrishnan, N., Babu, M. (2002). Antibacterial activity of Datura alba. Indian drugs, 39(2): 113-116.
[13]. Sandhu, S.S., Kanojiya, A., Mishra, P.K., Vikrant, P. (2004). Antifungal activity of Bacillus thuringiensis var. Kurstaki on Trichoderma viride. Proceedings of the Indian National Science Academy Part B Biological Sciences 74: 299-NIL_0005, 303-304.
[14]. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. (1987). In: Current Protocols in Molecular Biology. John Wiley and Sons, New York, pp: 241-245.
[15]. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd edition). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
[16]. Sanger, S., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74: 5463-5467.
[17]. Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22: 4673-4680.
[18]. Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S., Mahajan, S.K. (2002). Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J. Appl. Microbiol., 93: 965-975.
[19]. Sharaf, E.F. (2005). A potent chitinolytic activity of Alternaria alternata isolated from Egyptian black sand. Pol. J. Microbiol., 54: 145-151.
[20]. Gomaa, E.Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: their potential in Antifungal Biocontrol. J. Microbiol., 50(1): 103-111.
[21]. Shanmugaiah, V., Mathivanan, N., Balasubramanian, N., Manoharan, P.T. (2008). Optimization of cultural conditions for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. Afr. J. Biotechnol., 7: 2562-2568.
[22]. Nawani, N.N., Kapadnis, B.P. (2004). Production dynamics and characterization of chitinolytic system of Streptomyces sp. NK1057, a well equipped chitin degrader. World J. Microbiol. Biotechnol., 20: 487-494.
[23]. Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz-Kalman, Z., Koncz, C., Schell, J., Zilberstein, A. (1996). Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol, 62(10): 3581-3586.
[24]. Tantimavanich, S., Pantuwatana, S., Bhumiratana, A., Panbangred, W. (1997). Cloning of a chitinase gene into Bacillus thuringiensis subsp. aizawai for enhanced insecticidal activity. J. Gen. Appl. Microbiol., 43: 341-347.
[25]. Driss, F., Kallassy-Awad, M., Zouari, N., Jaoua, S. (2005). Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. Kurstaki. J. Applied Microbiol., 99: 945-953.
[26]. Quecine, M.C., Araujo, W.L., Marcon, J., Gai, C.S., Azevedo, J.L., Pizzirani-Kleiner, A.A. (2008). Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett. Appl. Microbiol., 47: 486-491.
[27]. Ganesan, M., Bhanumathi, P., Ganesh Kumari, K., Lakshmi Prabha, A., Song, P.S., Jayabalan, N. (2009). Transgenic Indian cotton (Gossypium hirsutum) harboring rice chitinase gene (Chi II) confers resistance to two fungal pathogens. Am. J. Biochem. & Biotech, 5(2): 63-74.
[28]. Hansen, B.M., Hendriksen, N.B. (2001). Detection of Enterotoxic Bacillus cereus and Bacillus thuringiensis Strains by PCR Analysis. Appl. Environ. Microbiol., 67(1): 185–189.




How to Cite

Abdal-Aziz, S. A., & Yassein, A. A. (2014). Bacillus thuringiensis var. aizawai HD-137 as a Potential Agent for Biological Control. Journal of Advanced Laboratory Research in Biology, 5(1), 1–6. Retrieved from