Methods to Isolate Possible Bacteriophage for Micrococcus luteus and Acinetobacter baumannii

Authors

  • Amanda M. Hillis Department of Medical Laboratory Sciences, Idaho State University, Pocatello ID, United States. http://orcid.org/0000-0003-3304-618X
  • Rachel Hulse Department of Medical Laboratory Sciences, Idaho State University, Pocatello ID, United States.
  • Peter P. Sheridan Department of Biological Sciences, Idaho State University, Pocatello ID, United States.

Keywords:

Antibiotic resistance, Acinetobacter baumannii, Micrococcus luteus, Bacteriophage therapy

Abstract

The increasing prevalence of antibiotic-resistant strains of bacteria has led to a crisis in treatment options. Acinetobacter baumannii is an example of a bacterium that has developed a dangerous level of multidrug resistance. Not only does it have genes allowing for the resistance to antibiotics, but it also produces a biofilm that protects it. In recent years, A. baumannii has become a major contributor to nosocomial infections making it critical to develop new treatment methods. Micrococcus luteus, while typically not thought of as a pathogen, is also developing a resistance to antibiotics. M. luteus is capable of forming a biofilm on its own making it worrisome as it has increasingly been noted as an opportunistic pathogen.

One potential new treatment of antibiotic resistance is the development of bacteriophage therapy, using bacterial viruses to target the infection and treat it. This study examines methods for isolating novel bacteriophage from dairy cattle feces, specifically for the biofilm producers A. baumannii and M. luteus.

Downloads

Download data is not yet available.

References

Magiorakos, A.P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., Hindler, J.F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D.L., Rice, L.B., Stelling, J., Struelens, M.J., Vatopoulos, A., Weber, J.T. & Monnet, D.L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18(3): 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x.

Peng, F., Mi, Z., Huang, Y., Yuan, X., Niu, W., Wang, Y., Hua, Y., Fan, H., Bai, C. & Tong, Y. (2014). Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol., 14: 181. https://doi.org/10.1186/1471-2180-14-181.

Jin, J., Li, Z.J., Wang, S.W., Wang, S.M., Huang, D.H., Li, Y.H., Ma, Y.Y., Wang, J., Liu, F., Chen, X.D., Li, G.X., Wang, X.T., Wang, Z.Q. & Zhao, G.Q. (2012). Isolation and characterization of ZZ1, a novel lytic phage that infects Acinetobacter baumannii clinical isolates. BMC Microbiol., 12: 156. https://doi.org/10.1186/1471-2180-12-156.

Chang, K.C., Lin, N.T., Hu, A., Lin, Y.S., Chen, L.K. & Lai, M.J. (2011). Genomic analysis of bacteriophage ϕAB1, a ϕKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Genomics, 97(4): 249–255. https://doi.org/10.1016/j.ygeno.2011.01.002.

Chen, L.K., Liu, Y.L., Hu, A., Chang, K.C., Lin, N.T., Lai, M.J. & Tseng, C.C. (2013). Potential of bacteriophage ΦAB2 as an environmental biocontrol agent for the control of multidrug-resistant Acinetobacter baumannii. BMC Microbiol., 13: 154. https://doi.org/10.1186/1471-2180-13-154.

Yele, A.B., Thawal, N.D., Sahu, P.K. & Chopade, B.A. (2012). Novel lytic bacteriophage AB7-IBB1 of Acinetobacter baumannii: isolation, characterization and its effect on biofilm. Arch. Virol., 157(8): 1441–1450. https://doi.org/10.1007/s00705-012-1320-0.

De Silva, P.M. & Kumar, A. (2018). Effect of Sodium Chloride on Surface-Associated Motility of Acinetobacter baumannii and the Role of AdeRS Two-Component System. J. Membrane Biol., 251: 5–13. https://doi.org/10.1007/s00232-017-9985-7.

Bardbari, A.M., Arabestani, M.R., Karami, M., Keramat, F., Aghazadeh, H., Alikhani, M.Y. & Bagheri, K.P. (2018). Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis., 37(3): 443–454. https://doi.org/10.1007/s10096-018-3189-7.

Bouvet, P.J., Jeanjean, S., Vieu, J.F. & Dijkshoorn, L. (1990). Species, biotype, and bacteriophage type determinations compared with cell envelope protein profiles for typing Acinetobacter strains. J. Clin. Microbiol., 28(2): 170–176. https://doi.org/10.1128/jcm.28.2.170-176.1990.

Farmer, N.G., Wood, T.L., Chamakura, K.R. & Everett, G.F. (2013). Complete Genome of Acinetobacter baumannii N4-Like Podophage Presley. Genome Announc., 1(6): e00852-13. https://doi.org/10.1128/genomeA.00852-13

Dubrovin, E.V., Popova, A.V., Kraevskiy, S.V., Ignatov, S.G., Ignatyuk, T.E., Yaminsky, I.V. & Volozhantsev, N.V. (2012). Atomic Force Microscopy Analysis of the Acinetobacter baumannii Bacteriophage AP22 Lytic Cycle. PLoS One, 7(10): e47348. https://doi.org/10.1371/journal.pone.0047348.

Sato, Y., Unno, Y., Ubagai, T. & Ono, Y. (2018). Sub-minimum inhibitory concentrations of colistin and polymyxin B promote Acinetobacter baumannii biofilm formation. PloS One, 13(3): e0194556. https://doi.org/10.1371/journal.pone.0194556.

Tiwari, V., Patel, V. & Tiwari, M. (2018). In-silico screening and experimental validation reveal L-Adrenaline as anti-biofilm molecule against biofilm-associated protein (Bap) producing Acinetobacter baumannii. Int. J. Biol. Macromol., 107: 1242–1252. https://doi.org/10.1016/j.ijbiomac.2017.09.105.

Jeon, J., Kim, J.W., Yong, D., Lee, K. & Chong, Y. (2012). Complete genome sequence of the podoviral bacteriophage YMC/09/02/B1251 ABA BP, which causes the lysis of an OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolate from a septic patient. J. Virol., 86(22): 12437–12438. https://doi.org/10.1128/JVI.02132-12.

Feng, J., Liu, B., Xu, J., Wang, Q., Huang, L., Ou, W., Gu, J., Wu, J., Li, S., Zhuo, C. & Zhou, Y. (2018). In vitro effects of N-acetylcysteine alone and combined with tigecycline on planktonic cells and biofilms of Acinetobacter baumannii. J. Thorac. Dis., 10(1): 212–218. https://doi.org/10.21037/jtd.2017.11.130.

Parasion, S., Kwiatek, M., Gryko, R., Mizak, L. & Malm, A. (2014). Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol., 63(2): 137–145.

Hughes, K.A., Sutherland, I.W. & Jones, M.V. (1998). Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology, 144: 3039–3047. https://doi.org/10.1099/00221287-144-11-3039.

Farshadzadeh, Z., Taheri, B., Rahimi, S., Shoja, S., Pourhajibagher, M., Haghighi, M.A. & Bahador, A. (2018). Growth Rate and Biofilm Formation Ability of Clinical and Laboratory-Evolved Colistin-Resistant Strains of Acinetobacter baumannii. Front. Microbiol., 9: 1-11. https://doi.org/10.3389/fmicb.2018.00153.

Feng, L., Li, X., Song, P., Du, G. & Chen, J. (2014). Physicochemical properties and membrane biofouling of extra-cellular polysaccharide produced by a Micrococcus luteus strain. World J. Microbiol. Biotechnol., 30(7): 2025–2031. https://doi.org/10.1007/s11274-014-1627-y.

Mukamolova, G.V., Yanopolskaya, N.D., Votyakova, T.V., Popov, V.I., Kaprelyants, A.S. & Kell, D.B. (1995). Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch. Microbiol., 163(5): 373-379.

Seifert, H., Kaltheuner, M. & Perdreau-Remington, F. (1995). Micrococcus luteus endocarditis: case report and review of the literature. Zentralbl. Bakteriol., 282(4): 431–435. https://doi.org/10.1016/s0934-8840(11)80715-2.

Peces, R., Gago, E., Tejada, F., Laures, A.S. & Alvarez-Grande, J. (1997). Relapsing bacteraemia due to Micrococcus luteus in a haemodialysis patient with a Perm-Cath catheter. Nephrol. Dial. Transplant., 12(11): 2428–2429. https://doi.org/10.1093/ndt/12.11.2428.

Fosse, T., Peloux, Y., Granthil, C., Toga, B., Bertrando, J. & Sethian, M. (1985). Meningitis due to Micrococcus luteus. Infection, 13(6): 280–281. https://doi.org/10.1007/BF01645439.

Kaprelyants, A.S. & Kell, D.B. (1993). Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation. Appl. Environ. Microbiol., 59(10): 3187–3196. https://doi.org/10.1128/aem.59.10.3187-3196.1993.

Mali, S., Mitchell, M., Havis, S., Bodunrin, A., Rangel, J., Olson, G., Widger, W.R. & Bark, S.J. (2017). A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus. J. Bacteriol., 199(14): e00206-17. https://doi.org/10.1128/JB.00206-17.

Kang, H.W., Kim, J.W., Jung, T.S. & Woo, G.J. (2013). wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl. Environ. Microbiol., 79(6): 1956–1968. https://doi.org/10.1128/AEM.02793-12.

Li, L. & Zhang, Z. (2014). Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep., 41(9): 5829–5838. https://doi.org/10.1007/s11033-014-3457-2.

Shin, H., Lee, J.H., Kim, H., Choi, Y., Heu, S. & Ryu, S. (2012). Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PloS One, 7(8): e43392. https://doi.org/10.1371/journal.pone.0043392.

Warner, C.M., Barker, N., Lee, S.W. & Perkins, E.J. (2014). M13 bacteriophage production for large-scale applications. Bioprocess Biosyst. Eng., 37(10): 2067–2072. https://doi.org/10.1007/s00449-014-1184-7.

Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H. & Imai, S. (2005). Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother., 11(5): 211–219. https://doi.org/10.1007/s10156-005-0408-9.

Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R. & O'Toole, G.A. (2012). The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol., 194(21): 5728–5738. https://doi.org/10.1128/JB.01184-12.

Ghajavand, H., Esfahani, B.N., Havaei, A., Fazeli, H., Jafari, R. & Moghim, S. (2017). Isolation of bacteriophages against multidrug resistant Acinetobacter baumannii. Res. Pharm. Sci., 12(5): 373–380. https://doi.org/10.4103/1735-5362.213982.

Downloads

Published

06-10-2018

How to Cite

Hillis, A. M., Hulse, R., & Sheridan, P. P. (2018). Methods to Isolate Possible Bacteriophage for Micrococcus luteus and Acinetobacter baumannii. Journal of Advanced Laboratory Research in Biology, 9(4), 86–94. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/197

Issue

Section

Articles