Studies on endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica (C.B. Clarke) Pamp. and their antagonistic activity against Phytophthora infestans


  • Pyuhunlang Myrchiang Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
  • M. S. Dkhar Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.
  • Haobam Romola Devi Department of Botany, North-Eastern Hill University, Shillong-793022, Meghalaya, India.


Fungal endophytes, Antagonistic effect, Dual culture, Artemisia nilagirica, Phytophthora infestans


Antagonistic activity of endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica was studied against the pathogen Phytophthora infestans that causes late blight of potato. The study has a dual purpose, firstly identification of endophytic fungi isolated from Artemisia nilagirica; secondly, to evaluate their antagonism against Phytophthora infestans using the dual culture method. Altogether 23 fungal endophytes were isolated from root, stem and leaf of which 14 fungal endophytes were isolated from roots, 10 from stem and 6 from leaf. Among the isolates, 4 fungal species, namely Trichoderma viride, Penicillium atrovenetum, Aspergillus fumigatus and Cladosporium cladosporioides were selected to study the antagonistic effect against Phytophthora infestans. T. viride was found to have the highest percentage of inhibition of 67.0% followed by A. fumigates (59.6%), P. atrovenetum (56.7%) and C. cladosporioides (33.0%). Among the test organisms, a zone of inhibition was produced only by T. viride and P. atrovenetum. T. viride showed the maximum inhibition zone of 1cm against P. infestans while that of P. atrovenetum was 0.4cm. This study shows that out of the four test organisms, Trichoderma viride may be recommended as a good source of biocontrol agent against P. infestans the causal organism of potato late blight.


Download data is not yet available.


Adebola, M.O. & Amadi, J.E. (2010). Screening three Aspergillus species for antagonistic activities against the cocoa black pod organism (Phytophthora palmivora). Agric. Biol. J. N. Am., 1(3): 362-365.

Adejumo, T.O., Ikotun, T. & Florini, D.A. (1999). Biological Control of Protomycopsis phaseoli, the Causal Agent of Leaf Smut of Cowpea. J. Phytopathol., 147(6): 371–375.

Azevedo, J.L., Maccheroni Jr, W., Pereira, J.O. & Luiz de Araújo, W. (2000). Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron. J. Biotechnol., 3: 40-65.

Backman, P.A. & Sikora, R.A. (2008). Endophytes: An emerging tool for biological control. Biol. Control, 46(1): 1–3.

Barnett, H.L. & Hunter, B.B. (1972). Illustrated genera of imperfect fungi. 3rd Edition, Minneapolis, Burgess Publishing Company, 241 pp.

Carroll, G.C. (1986). The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema, N.J. & van den Heuvel, J. (eds), Microbiology of the phyllosphere. Cambridge University Press, Cambridge, pp. 205–222.

Chet, I., Inbar, J. & Hadar, Y. (1997). Fungal antagonists and mycoparasites. In: Wicklow, D.T. & Söderström, B. (eds), The Mycota IV: Environmental and Microbial Relationships. Springer-Verlag, Berlin, pp. 165-184.

Clay, K. & Schardl, C. (2002). Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am. Nat., 160 Suppl 4: S99–S127.

Clay, K., Fuqua, C., Lively, C. & Wade, M.J. (2006). Microbial community ecology of tick-borne human pathogens. In: Collinge, S.K. & Ray, C. (eds), Disease Ecology: Community Structure and Pathogen Dynamics. Oxford University Press: Oxford, pp. 41–57.

Domsch, K.H., Gams, W. & Anderson, T.H. (1980). Compendium of soil fungi. Academic Press, London.

Druvefors, U., Jonsson, N., Boysen, M.E. & Schnürer, J. (2002). Efficacy of the biocontrol yeast Pichia anomala during long-term storage of moist feed grain under different oxygen and carbon dioxide regimens. FEMS Yeast Res., 2(3): 389–394.

Ellis, M.B. (1971). Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, London UK. 608 pp.

Faeth, S.H., Helander, M.L. & Saikkonen, K.T. (2004). Asexual Neotyphodium endophytes in a native grass reduce competitive abilities. Ecol. Lett., 7(4): 304–313.

Fisher, P.J., Sutton, B.C., Petrini, L.E. & Petrini, O. (1994). Fungal endophytes from Opuntia stricta: a first report. Nova Hedwigia, 59: 195–200.

Goveas, S.W., Madtha, R., Nivas, S.K. & D'Souza, L. (2011). Isolation of endophytic fungi from Coscinium fenestratum -a red listed endangered medicinal plant. EurAsian J. Biosci., 5: 48-53.

Huang, W.Y., Cai, Y.Z., Hyde, K.D., Corke, H. & Sun, M. (2008). Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Diversity, 33: 61-75.

Knop, M., Pacyna, S., Voloshchuk, N., Kant, S., Müllenborn, C., Steiner, U., Kirchmair, M., Scherer, H.W. & Schulz, M. (2007). Zea mays: benzoxazolinone detoxification under sulfur deficiency conditions--a complex allelopathic alliance including endophytic Fusarium verticillioides. J. Chem. Ecol., 33(2): 225–237.

Kunkel, B.A. & Grewal, P.S. (2003). Endophyte infection in perennial ryegrass reduces the susceptibility of black cutworm to an entomopathogenic nematode. Entomol. Exp. Appl., 107(2): 95–104.

Kusari, S., Lamshöft, M., Zühlke, S. & Spiteller, M. (2008). An endophytic fungus from Hypericum perforatum that produces hypericin. J. Nat. Prod., 71(2): 159–162.

Lamsal, K., Kim, S.W., Kim, Y.S. & Lee, Y.S. (2013). Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol., 23(7): 897–904.

Li, Z., Li, S., Zhou, B., Yang, L. & Chen, Y. (2004). Antifungal activity of endophytic fungi from three pharmaceutical plants. Wei Sheng Wu Xue Za Zhi, 24(6): 35-37.

Maciá-Vicente, J.G., Rosso, L.C., Ciancio, A., Jansson, H.-B. & Lopez-Llorca, L.V. (2009). Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann. Appl. Biol., 155(3): 391–401.

Malinowski, D.P. & Belesky, D.P. (2006). Ecological importance of Neotyphodium spp. grass endophytes in agroecosystems. Grassland Sci., 52(1): 1–14.

Mandyam, K. & Jumpponen, A. (2005). Abundance and possible functions of the root-colonising dark septate endophytic fungi. Stud. Mycol., 53: 173–189.

Mejía, L.C., Rojas, E.I., Maynard, Z., Bael, S.V., Arnold, A.E., Hebbar, P., Samuels, G.J., Robbins, N. & Herre, E.A. (2008). Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biol. Control, 46(1): 4–14.

Mercier, J. & Jiménez, J.I. (2009). Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl, 54(6): 797–805.

Odigie, E.E. & Ikotun, T. (1982). In vitro and in vivo inhibition of growth of Phytophthora palmivora, Butl., by antagonistic microorganisms. Fitopatologia brasileira, 7(2): 157-167.

Petrini, O., Sieber, T.N., Toti, L. & Viret, O. (1992). Ecology, metabolite production, and substrate utilization in endophytic fungi. Nat. Toxins, 1(3): 185–196.

Redman, R.S., Freeman, S., Clifton, D.R., Morrel, J., Brown, G. & Rodriguez, R.J. (1999). Biochemical analysis of plant protection afforded by a nonpathogenic endophytic mutant of colletotrichum magna. Plant Physiol., 119(2): 795–804.

Saikkonen, K., Faeth, S.H., Helander, M. & Sullivan, T.J. (1998). FUNGAL ENDOPHYTES: A Continuum of Interactions with Host Plants. Annu. Rev. Ecol. Syst., 29(1): 319–343.

Schulz, B., Boyle, C., Draeger, S., Römmert, A.-K. & Krohn, K. (2002). Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res., 106(9): 996–1004.

Shankar, M., Kurtböke, D.I. & Sivasithamparam, K. (1994). Nutritional and environmental factors affecting growth and antifungal activity of a sterile red fungus against Gaeumannomyces graminis var. tritici. Can. J. Bot., 72(2): 198-202.

Shentu, X.P., Chen, L.Z. & Yu, X.P. (2007). Anti-fungi activities and cultural characteristics of gingko endophytic fungus No. 1028. Acta Phytophylacica Sin., 34: 147–152.

Skidmore, A.M. & Dickinson, C.H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Trans. Br. Mycol. Soc., 66(1): 57–64.

Strobel, G. & Daisy, B. (2003). Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev., 67(4): 491–502.

Strobel, G.A. (2003). Endophytes as sources of bioactive products. Microbes Infect., 5(6): 535–544.

Subramanian, C.V. (1971). Hyphomycetes: An account of Indian species, except Cercosporae. New Delhi: Indian Council of Agricultural Research.

Suryanarayanan, T.S., Venkatesan, G. & Murali, T.S. (2003). Endophytic fungal communities in leaves of tropical forest trees: Diversity and distribution patterns. Current Science, 85(4): 489-493.

Thrower, L.B. & Lewis, D.H. (1973). Uptake of Sugars by Epichloe typhina (Pers. Ex Fr.) Tul. in Culture and from its Host, Agrostis stolonifera L. New Phytol., 72(3): 501–508.

Xu, L.-J., Zhou, L.-G., Zhao, J.-L. & Jiang, W.-B. (2008). Recent studies on the antimicrobial compounds produced by plant endophytic fungi. Nat. Prod. Res. Dev., 20: 731-740.

Yan, Z.-Y., Luo, J., Guo, X.-H. & Zeng, Q.-Q. (2007). Screening of ginkgolides-producing endophytic fungi and optimal study on culture condition. Nat. Prod. Res. Dev., 19: 554–558.




How to Cite

Myrchiang, P., Dkhar, M. S., & Devi, H. R. (2014). Studies on endophytic fungi associated with medicinally important aromatic plant Artemisia nilagirica (C.B. Clarke) Pamp. and their antagonistic activity against Phytophthora infestans. Journal of Advanced Laboratory Research in Biology, 5(4), 112–119. Retrieved from