The Effect of Sulfated Glycosaminoglycans Extracted from Acanthaster planci on Full Thickness Excision Wound Healing in Animal Model

Authors

  • Nur Afiqah Bahrom Biomedical Sciences Department, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
  • K. N. S. Sirajudeen Chemical Pathology Department, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
  • George W. Yip Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, 117597, Singapore.
  • Farid C. Ghazali Biomedical Sciences Department, School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.

Keywords:

Sulfated Glycosaminoglycans, Acanthaster planci, Starfish, Microscopy, Wound healing

Abstract

In this study, sulfated glycosaminoglycans (GAGs) was extracted from Acanthaster planci and its wound healing effects was assessed. Macroscopic examination revealed significant (p<0.05) contraction percentage (%) of wound on each observation (Day 1, Day 6 and Day 12) as compared to control group. Microscopic evaluations using light microscope, scanning, and transmission electron microscope showed that sulfated GAGs from A. planci enhanced epithelial cells migration and fibroblasts proliferation, and stimulate dense organisation of collagen fibers on the 12th day of observation, significantly (p<0.05) compared to control group. The microscopic study concluded that the second-intention excisional wound healing occurs faster in the GAGs treated group as compared to the saline-treated control group, while microscopical study using light microscope, scanning and transmission electron microscope revealed that the GAGs treated group have a significant effect in enhanced epithelization formation, fibroblasts proliferation and collagen fibers organization parameters as compared to the control group.

Downloads

Download data is not yet available.

References

[1]. Yamada, S., Sugahara, K. & Ozbek, S. (2011). Evolution of glycosaminoglycans: comparative biochemical study. Commun. Integr. Biol., 4(2): 150-158.
[2]. Gallo, R.L. & Bernfield, M. (1996). Proteoglycans and their role in wound repair. In: Clark, R.A.F. (Ed.). The Molecular and Cellular Biology of Wound Repair, 2nd ed., Plenum, New York.
[3]. Hocking, A.M., Shinomura, T. & McQuillan, D.J. (1998). Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol., 17: 1-19.
[4]. Parkinson, J.F., Koyama, T., Bang, N.Y. & Preissner, K.T. (1992). Thrombomodulin: an anticoagulant cell surface proteoglycan with physiologically relevant glycosaminoglycan moiety. Advances in Experimental Medicine and Biology, 313: 177–188.
[5]. Shiomi, K., Nagai, K., Yamanaka, H. & Kikuchi, T. (1989). Inhibitory effect of anti-inflammatory agents on the cutaneous capillary leakage induced by six marine venoms. Nippon Suisan Gakkaishi, 55: 131– 134.
[6]. Shiroma, N., Noguchi, K., Matsuzaki, T., Ojiri, Y., Hirayama, K., Sakanashi, M. (1994). Haemodynamic and haematologic effects of Acanthaster planci venom in dogs. Toxicon, 32: 1217– 1225.
[7]. Mutee, A.F., Salhimi, S.M., Ghazali, F.C., Al-Hassan, F.M., Lim, C.P., Ibrahim, K. & Asmawi, M.Z. (2012). Apoptosis induced in human breast cancer cell line by Acanthaster planci starfish extract compared to Tamoxifen. African Journal of Pharmacy and Pharmacology, 6(3): 129-134.
[8]. Tan, C.C., Karim, A.A., Latiff, A.A., Gan, C.Y., Ghazali, F.C. (2013). Extraction and characterization of pepsin-solubilized collagen from the body wall of crown-of-thorns Starfish (Acanthaster planci). International Food Research Journal, 20(6): 3013-3020.
[9]. Trotter, J.A., Lyons-Levy, G., Luna, D., Koob, T.J., Keene, D.R. & Atkinson, M.A.L. (1996). Stiparin: A glycoprotein from sea cucumber dermis that aggregates collagen fibrils. Matrix Biology, 15: 99–110.
[10]. Masre, S.F., Yip, G.W., Sirajudeen, K.N.S and Ghazali, F.C. (2011). Quantitative analysis of sulphated glycosaminoglycans content of Malaysian sea cucumber Stichopus hermanni and Stichopus vastus. Natural Product Research, 26(7):684-9.
[11]. Ledin, J., Staatz, W., Li, J.P., Gotte, M., Selleck, S., Kjellén, L. & Spillmann, D. (2004). Heparan sulfate structure in mice with genetically modified heparan sulfate production. J. Biol. Chem., 279(41): 42732-42741.
[12]. Staatz, W.D., Toyoda, H., Kinoshita-Toyoda, A., Chhor, K. and Selleck, S.B. (2001). Analysis of proteoglycans and glycosaminoglycans from Drosophila. In: Iozzo R.V. (eds) Proteoglycan Protocols. Methods in Molecular Biology™, Vol. 171. Humana Press Inc., New Jersey, pp. 41-52.
[13]. Zou, X.H., Foong, W.C., Cao, T., Bay, B.H., Ouyang, H.W. and Yip, G.W. (2004). Chondroitin sulfate in palatal wound healing. Journal of Dental Research, 83(11): 880-885.
[14]. Sardari, K., Dehgan, M.M., Mohri, M., Emami, M.R., Mirshahi, A., Maleki, M., Barjasteh, M.N. & Aslani, M.R. (2006). Macroscopic aspects of wound healing (contraction and epithelialisation) after topical administration of allicin in dogs. Comparative Clinical Pathology, 15: 231-235.
[15]. Cross, S.E., Naylor, I.L., Coleman, R.A. & Teo, T.C. (1995). An experimental model to investigate the dynamics of wound contraction. British Journal of Plastic Surgery, 48: 189-197.
[16]. Olczyk, P., Mencner, ?. and Komosinska-Vassev, K. (2014). The Role of the Extracellular Matrix Components in Cutaneous Wound Healing. BioMed Research International. Article ID 747584, http://dx.doi.org/10.1155/2014/747584.
[17]. Mulder, G.D., Patt, L.M., Sanders, L., Rosenstock, J., Altman, M.I., Hanley, M.E., Duncan, G.W. (1994). Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-L-histidyl-L-lysine copper. Wound Repair and Regeneration, 2: 259-269.
[18]. Croft, C.B. & Tarin, D. (1970). Ultrastructural studies of wound healing in mouse skin. I. Epithelial behaviour. Journal of Anatomy, 106: 63-77.
[19]. Holbrook, K.A. & Odland, G.F. (1975). The fine structure of developing human epidermis: light, scanning and transmission electron microscopy of the periderm. Journal of Investigative Dermatology, 65: 16-38.
[20]. Piaggesi, A., Viacava, P., Rizzo, L., Naccarato, G., Baccetti, F., Romanelli, M., Zampa, V. & Del Prato, S. (2003). Semiquantitative analysis of the histopathological features of the neuropathic foot ulcer: effects of pressure relief. Diabetes Care, 26 (11): 3123-3128.
[21]. Rajabi, M.A. and Rajabi, F. (2007). The effect of estrogen on wound healing in rats. Pakistan Journal of Medical Sciences, 23(3): 349-352.
[22]. Bell. P.B., Revel, J.P. (1980). Scanning electron microscope application to cells and tissues in culture. In: Hodges, G.M. and Hallowes, R.C. (Eds), Biomedical Research Application of Scanning Electron Microscopy. Academic Press, London. pp. 1-65.
[23]. Braiman-Wiksman, L., Solomonik, I., Spira, R., Tennenbaum, T. (2007). Novel insights into wound healing sequence of events. Toxicologic Pathology, 35(6): 767-79.
[24]. Escámez, M.J., García, M., Larcher, F., Meana, A., Muñoz, E., Jorcano, J.L., Del Río, M. (2004). An in vivo model of wound healing in genetically modified skin-humanized mice. Journal of Investigative Dermatology, 123: 1182-1191.
[25]. Sarkar, A. (2008). The effect of Stromal cell Derived Factor-1 (SDF-1) and collagen-GAG (Glycosaminoglycan) scaffold on skin wound healing. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering. pp 155-160.
[26]. Ojeh, N., Hiilesvuo, K., Wärri, A., Salmivirta, M., Henttinen, T. & Määttä, A. (2008). Ectopic expression of syndecan-1 in basal epidermis affects keratinocyte proliferation and wound re-epithelialization. Journal of Investigative Dermatology, 128: 26-34.
[27]. Priest, R.E. (1972). Cellular replication and specialized function of fibroblasts. Journal of Investigative Dermatology, 59: 35–39.
[28]. Deodhar, A.K. & Rana, R.E. (1997). Surgical physiology of wound healing: a review. Journal of Postgraduate Medicine, 43: 52-6.
[29]. Clark, R.A., Lin, F., Greiling, D., An, J. & Couchman, J.R. (2004). Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan. Journal of Investigative Dermatology, 122: 266-277.
[30]. Faassen, A.E., Schrager, J.A., Klein, D.J., Oegema, T.R., Couchman, J.R. & McCarthy, J.B. (1992). A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44 is involved in type I collagen-mediated melanoma cell motility and invasion. Journal of Cell Biology, 116: 521-531.
[31]. Greiling, D. & Clark, R.A. (1997). Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix. Journal of Cell Science, 110: 861-870.
[32]. Shivananda Nayak, B., Sivachandra Raju, S., Orette, F.A. & Chalapathi Rao, A.V. (2007). Effects of Hibiscus rosa sinensis L (Malvaceae) on Wound Healing Activity: A Preclinical Study in a Sprague Dawley Rat. The International Journal of Lower Extremity Wounds, 6(2): 76–81. https://doi.org/10.1177/1534734607302840.
[33]. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2013). Essential Cell Biology. Fourth edition. Garland Science, Taylor & Francis Group, New York. pp. 689-690.
[34]. Kirker, K.R. (2003). Glycosaminoglycan hydrogels for wound healing. Dissertation for Thesis (Ph.D.), Dept. of Bioengineering, University of Utah, Salt Lake City, UT.

Downloads

Published

01-01-2016

How to Cite

Bahrom, N. A., Sirajudeen, K. N. S., Yip, G. W., & Ghazali, F. C. (2016). The Effect of Sulfated Glycosaminoglycans Extracted from Acanthaster planci on Full Thickness Excision Wound Healing in Animal Model. Journal of Advanced Laboratory Research in Biology, 7(1), 1–7. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/242

Issue

Section

Articles

Most read articles by the same author(s)