Ultra-differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus jaculus (Family: Dipodidae)


  • Osama M. Sarhan Department of Zoology, Faculty of Science, Fayoum University, Egypt.
  • Hany A. Hefny Department of Biology, Faculty of Applied Science, Umm Al-Qura University, KSA.


Ultrastructure, Sperm tail, Lesser Egyptian Jerboa, Jaculus jaculus, Rodents, Mammals


In the present study, events of sperm tail differentiation in Lesser Egyptian Jerboa, Jaculus jaculus were studied for the first time. Generally, stages of sperm tail differentiation are more or less similar to that described by other studies in other rodents. In the present species, special structures were observed. These structures include, first: the formation of a hollow large unit of microtubules that appears to surround the nuclear envelope at its equatorial plane. The manchette microtubules (MMs) are re-oriented toward the longitudinal direction and attached along hollow large unit of microtubules. Second, the formation of perinuclear space filled with an electron-translucent substance surrounds the posterior third of the developing nucleus. Third, the nuclear fossa and the connecting piece were inserted in the ventrodorsal region of the nucleus. Fourth, the fibrous sheath (FS) is formed of dextral spiral fibrous ribs. Finally, the sperm tail of the present species has a single outer FS, however, other rodents, having additional inner fibrous units, between the outer FS and the inner developing axoneme.


Download data is not yet available.


[1]. IUCN (International Union for Conservation of Nature, 2015). Jaculus jaculus. In: IUCN 2015. The IUCN Red List of Threatened Species. Version 2015.2. http://www.iucnredlist.org. Downloaded on 14 July 2015.
[2]. Shahin, A.A.B. and Ibraheem, M.H. (1998). Sperm morphology of the dipodid rodents (Jerboas) common in Egypt. Belgian Journal of Zoology, 128(2): 189-200.
[3]. Sarhan, O.M.M. (2009). Spermiogenesis of Egyptian mammals: 1-Sperm head and tail differentiation of fat-tailed gerbil, Pachyuromys duprasi. Egypt. J. Zool., 53: 283-309.
[4]. Wang, R. and Sperry, A.O. (2008). Identification of a novel leucine-rich repeat protein and candidate PP1 regulatory subunit expressed in developing spermatids. "Electronic version". BMC Cell Biology, 9:9 doi:10.1186/1471-2121-9-9.
[5]. Lin, M. and Jones, R.C. (2000). Spermiogenesis and spermiation in a monotreme mammal, the platypus, Ornithorhynchus anatinus. Journal of Anatomy, 196(2): 217-232.?
[6]. Mori, T., Arai, S., Shiraishi, S. and Uchida, T.A. (1991). Ultrastructural Observations on Spermatozoa of the Soricidae, with Special Attention to a Subfamily Revision of the Japanese Water Shrew Chimarrogale himalayica. J. Mamm. Soc. Japan, 16: 1-12.
[7]. Jeong, S.J., Yoo, J.Y. and Jeong, M.J. (2004). Ultrastructure of the Abnormal Head of the Epididymal Spermatozoa in the Big White-Toothed Shrew, Crocidura lasiura. Korean Journal of Electron Microscopy, 34(3): 179-184.
[8]. Jeong, S.J., Park, J.C., Kim, H.J., Bae, C.S., Yoon, M.H., Lim, D.S., Jeong, M.J. (2006). Comparative fine structure of the epididymal spermatozoa from three Korean shrews with considerations on their phylogenetic relationships. Biocell, 30(2): 279-286.
[9]. Singwi, M.S. and Lall, S.B. (1983). Spermatogenesis in the non-scrotal bat Rhinopoma kinneari Wroughton (Microchiroptera: Mammalia). Acta Anat. (Basel), 116(2): 136-145.
[10]. Jung-Hun, L. ( 2003). Cell Differentiation and Ultrastructure of the Seminiferous Epithelium in Myotis macrodactylus. Korean Journal of Electron Microscopy, 33(1): 25-39.
[11]. Sapsford, C.S., Rae, C.A. and Cleland, K.W. (1969). Ultrastructural studies on maturing spermatids and on Sertoli cells in the bandicoot Perameles nasuta Geoffroy (Marsupialia). Aust. J. Zool., 17: 195-292.
[12]. Ricci, M. and Breed, W.G. (2005). Morphogenesis of the fibrous sheath in the marsupial spermatozoon. J. Anat., 207(2): 155-164.
[13]. Burgos, M.H. and Fawcett, D.W. (1955). Studies on the fine structure of the mammalian testis. I. Differentiation of the spermatids in the cat (Felis domestica). J. Biophys. Biochem. Cytol., 1(4): 287-300.
[14]. Holt, W.V. and Moore, H.D.M. (1984). Ultrastructural aspects of spermatogenesis in the common marmoset (Callithrix jacchus). J. Anat., 138: 175-188.
[15]. Moreno, R.D., Ramalho-Santos, J., Chan, E.K., Wessel, G.M. and Schatten, G. (2000a). The Golgi apparatus segregates from the lysosomal/acrosomal vesicle during rhesus spermiogenesis: structural alterations. Dev. BioI., 219: 334-349.
[16]. Moreno, R.D., Ramalho-Santos, J., Sutovsky, P., Chan, E.K. and Schatten, G. (2000b). Vesicular traffic and Golgi apparatus dynamics during mammalian spermatogenesis: Implications for acrosome architecture. Biol. Reprod., 63: 89-98.
[17]. Dadoune, J.P. and Alfonsi, M.F. (1986). Ultrastructural and cytochemical changes of the head components of human spermatids and spermatozoa. Gamete Res., 14: 33-46.
[18]. Kim, Y.H., de Krester, D.M., Temple-Smith, P.D., Hearn, M.T. and McFarlane, J.R. (1997). Isolation and characterization of human and rabbit sperm tail fibrous sheath. Mol. Hum. Reprod., 3(4): 307-313.
[19]. Toyama, Y., Iwamoto, T., Yajima, M., Baba, K. and Yuasa, S. (2000). Decapitated and decaudated spermatozoa in man, and pathogenesis based on the ultrastructure. Int. J. Androl., 23(2): 109-115.
[20]. Challice, C.E. (1953). Electron microscope studies of spermiogenesis in some rodents. J. R. Microsc. Soc., 73: 115-127.
[21]. Rattner, J.B. and Brinkley, B.R. (1972). Ultrastructure of mammalian spermiogenesis. 3. The organization and morphogenesis of the manchette during rodent spermiogenesis. J. Ultrastruct. Res., 41(3):209-18.
[22]. Russell, L.D., Russell, J.A., MacGregor, G.R. and Meistrich, M.L. (1991). Linkage of manchette microtubules to the nuclear envelope and observations of the role of the manchette in nuclear shaping during spermiogenesis in rodents. Am. J. Anal., 192: 97-120.
[23]. Gardner, P.J. (1966). Fine structure of the seminiferous tubule of the Swiss mouse. The spermatid. Anat. Rec., 155: 235-249.
[24]. Jin, Q.S., Kamata, M., Garcia del Saz, E. and Seguchi, H. (1995). Ultracytochemical study of trimetaphosphatase activity during acrosomal formation in the mouse testis. Histol. Histopathol., 10: 681-689.
[25]. Ho, H.C., Tang, C.Y. and Suarez, S.S. (1999). Three-dimensional structure of the Golgi apparatus in mouse spermatids: a scanning electron microscopic study. Anat. Rec., 256: 189-194.
[26]. Minamino, T. (1955). Spermiogenesis in the albino rat as revealed by electron microscopy. Electron Microsc., 4: 249-253.
[27]. Tang, X.M., Lalli, M.F. and Clermont, Y. (1982). A cytochemical study of the Golgi apparatus of the spermatid during spermiogenesis in the rat. Am. J. Anat., 163: 283-294.
[28]. Pelletier, R.M. and Friend, D.S. (1983). Development of membrane differentiations in the guinea pig spermatid during spermiogenesis. Am. J. Anat., 167: 119-141.
[29]. Burgos, M.H. and Gutierrez, L.S. (1986). The Golgi complex of the early spermatid in guinea pig. Anat. Rec., 216: 139-145.
[30]. Sapsford, C.S., Rae, C.A. and Cleland, K.W. (1970). Ultrastructural studies on the development and form of the principal piece sheath of the bandicoot spermatozoon. Aust. J. Zool., 18: 21-48.
[31]. Oko, R. and Clermont, Y. (1989). Light microscopic immunocytochemical study of fibrous sheath and outer dense fiber formation in the rat spermatid. Anat Rec., 225: 46-55.
[32]. Rawe, V.Y., Galaverna, G.D., Acosta, A.A., Olmedo, S.B., Chemes, H.E. (2001). Incidence of tail structure distortions associated with dysplasia of the fibrous sheath in human spermatozoa. Human Reproduction, 16(5): 879-886.?
[33]. Yokota, S. (2008). Historical survey on chromatoid body research. Acta Histochem. Cytochem., 41(4): 65-82.
[34]. Guan, J., Kinoshita, M. and Yuan, L. (2009). Spatiotemporal Association of DNAJB13 with the annulus during mouse sperm flagellum development. BMC Dev. Biol., 9: 23. doi: 10.1186/1471-213X-9-23.
[35]. Lim, S.L., Qu, Z.P., Kortschak, R.D., Lawrence, D.M., Geoghegan, J., Hempfling, A.L., Bergmann, M., Goodnow, C.C., Ormandy, C.J., Wong, L., Mann, J., Scott, H.S., Jamsai, D., Adelson, D.L., O'Bryan, M.K. (2015). HENMT1 and piRNA Stability are Required for Adult Male Germ Cell Transposon Repression and to Define the Spermatogenic Program in the Mouse. PLoS Genet., 11(10): e1005620. doi: 10.1371/journal.pgen.1005620.
[36]. Fouquet, J.P., Kann, M.L., Soues, S. and Melki, R. (2000). ARP1 in Golgi organisation and attachment of manchette microtubules to the nucleus during mammalian spermatogenesis. J. Cell Sci., 113: 877-886.
[37]. Meistrich, M.L., Trostle-Weige, P.K., Russell, L.D. (1990). Abnormal manchette development in spermatids of azh/azh mutant mice. Am. J. Anat., 188(1): 74-86.
[38]. Kierszenbaum, A.L. (2002). Intramanchette transport (IMT): managing the making of the spermatid head, centrosome, and tail. Mol. Reprod. Dev., 63(1): 1-4.
[39]. Eddy, E.M., Toshimori, K. and O'Brien, D.A. (2003). Fibrous sheath of mammalian spermatozoa. Microsc. Res. Tech., 61: 103-115.
[40]. Turner, R.M. (2003). Tales from the Tail: What do we really know about sperm motility? J. Androl., 24(6):790-803.




How to Cite

Sarhan, O. M., & Hefny, H. A. (2016). Ultra-differentiation of Sperm Tail of Lesser Egyptian Jerboa, Jaculus jaculus (Family: Dipodidae). Journal of Advanced Laboratory Research in Biology, 7(1), 27–35. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/246