Conventional and molecular differentiation between capsular types of Pasteurella multocida isolated from various animal hosts


  • Ayaat Teleb Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt.
  • Gamal Mohamedin Hassan Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt.
  • Ahmed Yaseein Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt.
  • Zaki El Fiky Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt.


Pasteurella multocida, Hyaluronidase test, Acriflavine test, Capsular typing, PCR, Multiplex PCR


In this study, ten strains of P. multocida isolated from chicken, cattle, buffalo and sheep had a clinical manifestation of pneumonia were identified by species-specific PCR (PM-PCR) and 460bp products were obtained. Capsular typing of P. multocida is useful for epidemiological evidence and has been assessed by conventional and genotyping assays. According to the results, only one out of the ten strains (10%) which isolated from chicken was detected as capsular type D based on acriflavine test and did not detect the capsular type A for all the ten strains (0%) by using hyaluronidase test. PCR was applied to identify the capsular types using specific primers for each type of P. multocida. The findings of this study showed that a uniform amplicon size was corresponding to 657bp, 851bp and 510bp indicating that it belongs to capsular type D, type F and type E, respectively. So, the ten strains were identified to a one strain isolated from chicken as a type D (10%), one strain of which isolated from cattle as a type F (10%) and eight strains of which isolated from sheep, cattle, buffalo and chicken as a type E (80%). Likewise, the data of multiplex PCR showed that capsular type D, one strain; capsular type F, one strain and capsular type E, eight strains. Thus, the multiplex PCR can be used as a simple, sensitive, rapid, reliable technique for capsular typing identification of P. multocida. We concluded that the P. multocida serogroup E is common in Egypt and has a wide host range.


Download data is not yet available.


[1]. Carter, G.R. (1967). Pasteurellosis: Pasteurella multocida and Pasteurella hemolytica. Advances in Veterinary Science, 11: 321–379.
[2]. Boyce, J.D., Harper, M., Wilkie, I. & Adler, B. (2010). Pasteurella. In: C.L. Gyles, J.F. Prescott, J.G. Songer, & C.O. Thoen (Eds.), Pathogenesis of Bacterial Infections in Animals (4th ed., pp. 325-346). USA: John Wiley & Sons.
[3]. Rimler, R.B. & Rhoades, K.R. (1987). Serogroup F, a new capsule serogroup of Pasteurella multocida. Journal of Clinical Microbiology, 25(4): 615-618.
[4]. Harper, M., Boyce, J.D. & Adler, B. (2006). Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol. Lett., 265(1):1-10.
[5]. Carter, G.R. (1955). Studies on Pasteurella multocida. I. A hemagglutination test for the identification of serological types. American Journal of Veterinary Research, 16: 481-484.
[6]. Carter, G.R. (1972). Improved Hemagglutination Test for Identifying Type A Strains of Pasteurella multocida. Applied Microbiology, 24: 162-163.
[7]. St. Michael, F., Harper, M., Parnas, H., John, M., Stupak, J., Vinogradov, E., Adler, B., Boyce, J.D. & Cox, A.D. (2009). Structural and Genetic Basis for the Serological Differentiation of Pasteurella multocida Heddleston Serotypes 2 and 5. Journal of Bacteriology, 191(22): 6950-6959. DOI: 10.1128/JB.00787-09.
[8]. Carter, G.R. & Subronto, P. (1973). Identification of type D strains of Pasteurella multocida with acriflavine. American Journal of Veterinary Research, 34: 293-294.
[9]. Carter, G.R. & Rundell, S.W. (1975). Identification of type A strains of P. multocida using staphylococcal hyaluronidase. Veterinary Record, 96(15): 343.
[10]. Brogden, K.A. & Packer, R.A. (1979). Comparison of Pasteurella multocida serotyping systems. American Journal of Veterinary Research, 40: 1332–1335.
[11]. Mutters, R., Ihm, P., Pohl, S., Frederiksen, W. & Mannheim, W. (1985). Reclassification of the genus Pasteurella Trevisan 1887 on the basis of deoxyribonucleic acid homology, with proposals for the new species Pasteurella dagmatis, Pasteurella canis, Pasteurella stomatis, Pasteurella anatis, and Pasteurella langaa. International Journal of Systematic Bacteriology, 35(3): 309–322. doi:10.1099/00207713-35-3-309.
[12]. Blackall, P.J., Pahoff, J.L. & Bowles, R. (1997). Phenotypic characterisation of Pasteurella multocida isolates from Australian pigs. Veterinary Microbiology, 57: 355–360.
[13]. Townsend, K.M., Frost, A.J., Lee, C.W., Papadimitriou, J.M. & Dawkins, H.J. (1998). Development of PCR assays for species- and type-specific identification of Pasteurella multocida isolates. Journal Clinical Microbiology, 36: 1096–1100.
[14]. Townsend, K.M., Boyce, J.D., Chung, J.Y., Frost, A.J. & Adler, B. (2001). Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. Journal Clinical Microbiology, 39: 924–929.
[15]. Chung, J.Y., Zhang, Y. & Adler, B. (1998). The capsule biosynthetic locus of Pasteurella multocida A:1. FEMS Microbiology Letters, 166: 289–296.
[16]. Boyce, J.D. & Adler, B. (2000). The Capsule Is a Virulence Determinant in the Pathogenesis of Pasteurella multocida M1404 (B:2). Infection and Immunity, 68: 3463-3468.
[17]. Shayegh, J., Atashpaz, S., Salehi, T.Z. & Hejazi, M.S. (2010). Potential of Pasteurella multocida isolated from healthy and diseased cattle and buffaloes in induction of diseases. Bulletin of the Veterinary Institute in Pulawy, 54(3): 299-304.
[18]. Ihab, G.M., Shemmari, A.L. & Al-Judi, A.M. (2014). Molecular identification by multiplex polymerase chain reaction of Pasteurella multocida in cattle and buffaloes in Baghdad. The Iraqi Journal of Veterinary Medicine, 38: 99-106.
[19]. Arumugam, N.D., Ajam, N., Blackall, P.J., Asiah, N.M., Ramlan, M., Maria, J., Yuslan, S. & Thong, K.L. (2011). Capsular serotyping of Pasteurella multocida from various animal hosts - a comparison of phenotypic and genotypic methods. Tropical Biomedicine, 28: 55–63.
[20]. Ragavendhar, K., Thangavelu, A., Kirubaharan, J., Ronald, B., Kumar, P. & Chandran, N. (2015). Prevalence of virulence associated genes in Pasteurella multocida isolates from Tamil Nadu. The Indian Journal of Animal Sciences, 85(12): 1289-1292.
[21]. Shirzad Aski, H. & Tabatabaei, M. (2016). Occurrence of virulence-associated genes in Pasteurella multocida isolates obtained from different hosts. Microbial Pathogenesis, 96:52-57.
[22]. Hassan, G.M., EL-Feky, Z.A., Eissa, E.A. & Ahmed, A.T. (2015). Determination of the Relationships between Pasteurella multocida isolated from different farm animals and their host range contacts in Egypt using biochemical and molecular techniques. Egyptian Journal of Genetics and Cytology, 44(2): 221-233.
[23]. Tillett, D. & Neilan, B.A. (2000). Xanthogenate nucleic acid isolation from cultured and environmental cyanobacteria. Journal of Phycology, 36: 251–258.
[24]. Prabhakar, P., Thangavelu, A., Kirubaharan, J.J. & Chandran, N.J. (2010). Isolation and Characterisation of P. multocida isolates from small ruminants and avian origin. Tamilnadu J. of Veterinary and Animal Sciences, 8(3): 131-137.
[25]. Balakrishnan, G. & Roy, P. (2012). Isolation, identification and antibiogram of Pasteurella multocida isolation of avian origin. Tamilnadu J. of Veterinary and Animal Sciences, 8(4): 199-202.
[26]. Fernández, S., Galapero, J., Gomez, L., Pérez, C.J., Ramos, A., Cid, D., Garcia, A.M. & Rey, J.G. (2018). Identification, capsular typing and virulence factors of Pasteurella multocida isolates from Merino lambs in Extremadura (Southwestern Spain). Veterinarni Medicina, 63(03): 117–124.
[27]. Król, J., Bania, J., Florek, M., Pliszczak-Król, A. & Staroniewicz, Z. (2011). Polymerase chain reaction-based identification of clinically relevant Pasteurellaceae isolated from cats and dogs in Poland. Journal of Veterinary Diagnostic Investigation, 23(3): 532–537.
[28]. Rimler, R.B. (1994). Presumptive identification of Pasteurella multocida serogroups A, D and F by capsule depolymerisation with mucopolysaccharidases. Veterinary Record, 134: 191–192.
[29]. Shivachandra, S.B., Kumar, A.A., Gautam, R., Singh, V.P., Saxena, M.K. & Srivastava, S.K. (2006). Identification of avian strains of Pasteurella multocida in India by conventional and PCR assays. The Veterinary J., 172: 561-564.
[30]. Ewers, C., Lübke-Becker, A., Bethe, A., Kiebling, S., Filter, M. & Wieler, L.H. (2006). Virulence genotype of Pasteurella multocida strains isolated from different hosts with various disease status. Veterinary Microbiology, 114: 304-317.
[31]. Chandrasekaran, S., Hizat, K., Saad, Z., Johara, M.Y. & Yeap, P.C. (1991). Evaluation of combined Pasteurella vaccines in control of sheep pneumonia. British Veterinary J., 147: 437-443.
[32]. Zamri-Saad, M., Effendy, W.M., Maswati, M.A., Salim, N. & Sheikh-Omar, A.R. (1996). The goat as a model for studies of pneumonic pasteurellosis caused by Pasteurella multocida. British Veterinary Journal, 152: 453-458.
[33]. Shayegh, J., Atashpaz, S. & Hejazi, M.S. (2008). Virulence Genes Profile and Typing of Ovine Pasteurella multocida. Asian Journal of Animal and Veterinary Advances, 3: 206-213.
[34]. Ferreira, T.S., Felizardo, M.R., Gobbi, D.D., Gomes, C.R., Filsner, P.H., Moreno, M.L., Paixão, R.M., Pereira, J.D. & Moreno, A.M. (2012). Virulence genes and antimicrobial resistance profiles of Pasteurella multocida strains isolated from Rabbits in Brazil. The Scientific World Journal, doi: 10.1100/2012/685028.
[35]. Verma, S., Sharma, M., Katoch, S., Verma, L., Kumar, S., Dogra, V., Chahota, R., Dhar, P. & Singh, G. (2013). Profiling of virulence associated genes of Pasteurella multocida isolated from cattle. Veterinary Research Communications, 37: 83-89.
[36]. Varga, Z., Volokhov, D.V., Stipkovits, L., Thuma, A., Sellyei, B. & Magyar, T. (2013). Characterization of Pasteurella multocida strains isolated from geese. Veterinary Microbiology, 163(1-2): 149-156.
[37]. Wilkie, I.W., Harper, M., Boyce, J.D. & Adler, B. (2012). Pasteurella multocida: diseases and pathogenesis. Current Topics in Microbiology and Immunology, 361: 1-22.
[38]. Harper, M., Boyce, J.D. & Adler, B. (2012). The Key Surface Components of Pasteurella multocida: Capsule and Lipopolysaccharide. In: Aktories, K., Orth, J., Adler, B. (eds) Pasteurella multocida. Current Topics in Microbiology and Immunology, 361: 39-51.
[39]. Pruimboom, I.M., Rimler, R.B., Ackermann, M.R. & Brogden, K.A. (1996). Capsular hyaluronic acid-mediated adhesion of Pasteurella multocida to turkey air sac macrophages. Avian Diseases, 40: 887-893.




How to Cite

Teleb, A., Hassan, G. M., Yaseein, A., & Fiky, Z. E. (2019). Conventional and molecular differentiation between capsular types of Pasteurella multocida isolated from various animal hosts. Journal of Advanced Laboratory Research in Biology, 10(1), 1–7. Retrieved from




Similar Articles

You may also start an advanced similarity search for this article.