Phylogenetic study of Indian Collembolan: an evaluation in Uttar Pradesh

  • Harish Chandra P.G. Department of Zoology, Ganjdundwara P.G. College, Ganjdundwara, Etah 207242, India.
  • Sher Singh P.G. Department of Zoology, Ganjdundwara P.G. College, Ganjdundwara, Etah 207242, India.
  • H. N. Sharma Department of Environmental Toxicology, Dr. B.R. Ambedkar University, Agra 282002, India.
Keywords: Springtails, Collembola, Phylogeny, Ventral tube, Retinaculum, Furcula

Abstract

Springtails (Collembola) from the largest of the three lineages of modern hexapods that are no longer considered insects (the other two are the Protura and Diplura). Although the three orders are sometimes grouped together in a class called Entognatha because they have internal mouthparts, they do not appear to be any more closely related to one another than they all are to insects, which have external mouthparts. Collembolans are omnivorous, free-living organisms that prefer moist conditions. They do not directly engage in the decomposition of organic matter but contribute to it indirectly through the fragmentation of organic matter and the control of soil microbial communities. The word "Collembola" is from the ancient Greek "Glue" and "Peg"; this name was given due to the existence of the collophore, which was previously thought to stick to surfaces in order to stabilize the insect. It is necessary to study the phylogeny of collembolans to explore evolutionary status.

Downloads

Download data is not yet available.

References

[1]. Baum, D.A. & Larson, A. (1991). Adaptation reviewed: A phylogenetic methodology for studying character macroevolution. Systematic Zoology, 40(1): 1–18, https://doi.org/10.1093/sysbio/40.1.1.
[2]. Brooks, D.R. & McLennan, D.A. (1991). Phylogeny, ecology, and behavior: A research program in comparative biology. University of Chicago Press.
[3]. Brown, R.W. (1956). Composition of scientific words. Smithsonian Institution Press. Washington, D.C. 882 pp.
[4]. Carpenter, J.M. (1989). Testing scenarios: wasp social behavior. Cladistics, 5: 131-144.
[5]. Chang, B.S. & Donoghue, M.J. (2000). Recreating ancestral proteins. Trends in Ecology and Evolution, 15: 109-114.
[6]. Coddington, J.A. (1988), Cladistic Tests of Adaptational Hypotheses. Cladistics, 4: 3-22. doi:10.1111/j.1096-0031.1988.tb00465.x.
[7]. Cunningham, C.W., Omland, K.E. & Oakley, T.H. (1998). Reconstructing ancestral character states: a critical reappraisal. Trends in Ecology and Evolution, 13: 361-366.
[8]. Donoghue, M.J. (1989). Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution, 43(6): 1137-1156. doi: 10.1111/j.1558-5646.1989.tb02565.x.
[9]. Donoghue, M.J. & Sanderson, M.J. (1992). The Suitability of Molecular and Morphological Evidence in Reconstructing Plant Phylogeny. In: Soltis, P.S., Soltis, D.E. & Doyle J.J. (eds). Molecular Systematics of Plants. Chapman and Hall, N.Y. pp. 340-368.
[10]. Doolittle, W.F. (1999). Phylogenetic classification and the universal tree. Science, 284: 2124-2128.
[11]. Edwards, A.W.F. & Cavalli-Sforza, L.L. (1964). Reconstruction of evolutionary trees. In: Heywood, V.H. and McNeill, J. (eds.), Phenetic and Phylogenetic Classification, Systematics Association Pub. No. 6, London. pp. 67–76.
[12]. Eldredge, N. and Cracraft, J. (1980). Phylogenetic Patterns and the Evolutionary Process: Method and Theory in Comparative Biology. Columbia University Press, New York.
[13]. Farrell, B.D., Mitter, C. & Futuyma, D.J. (1992). Diversification at the Insect-Plant Interface: Insights from phylogenetics. BioScience, 42(1): 34–42. doi: https://doi.org/10.2307/1311626.
[14]. Farris, J.S. (1970). Methods for computing Wagner Trees. Systematic Zoology, 19: 83-92.
[15]. Farris, J.S. (1983). The logical basis of phylogenetic analysis. In: Platnick, N.I. and Funk, V.A. (eds.), Advances in Cladistics, Vol. 2. Proceedings of the Second Meeting of the Willi Hennig Society. Columbia University Press, N.Y. pp. 1-36.
[16]. Felsenstein, J. (1979). Alternative Methods of Phylogenetic Inference and their Interrelationship. Systematic Zoology, 28(1): 49–62. https://doi.org/10.1093/sysbio/28.1.49.
[17]. Felsenstein, J. (1985). Phylogenies and the Comparative Method. The American Naturalist, 125(1): 1-15.
[18]. Felsenstein, J. (1988a). Phylogenies from molecular sequences: inference and reliability. Annual Review of Genetics, 22: 521-565.
[19]. Felsenstein, J. (1988b). Phylogenies and quantitative characters. Annual Review of Ecology and Systematics, 19: 445-471.
[20]. Felsenstein, J. (2004). Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts.
[21]. Fink, W.L. (1982). The Conceptual Relationship between Ontogeny and Phylogeny. Paleobiology, 8(3): 254-264.
[22]. Fitch, W.M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. Systematic Zoology, 20: 406-416.
[23]. Futuyma, D.J. (1988). Sturm und Drang and the evolutionary synthesis. Evolution, 42(2): 217-226. doi: 10.1111/j.1558-5646.1988.tb04126.x.
[24]. Futuyma, D.J. & McCafferty, S.S. (1990). Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella (Coleoptera, Chrysomelidae). Evolution, 44: 1885-1913. doi:10.1111/j.1558-5646.1990.tb04298.x.
[25]. Gittleman, J.L. (1988). The comparative approach in ethology: Aims and limitations. In: Bateson, P.P.G. and Klopfer, P.H. (eds.). Perspectives in Ethology, 8: 55–83. New York: Plenum.
[26]. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E. & Matsuda, G. (1979). Fitting the Gene Lineage into its Species Lineage, a Parsimony Strategy Illustrated by Cladograms Constructed from Globin Sequences. Systematic Zoology, 28(2): 132–163. https://doi.org/10.1093/sysbio/28.2.132.
[27]. Graur, D. and Li, W.-H. (1999) Fundamentals of Molecular Evolution. 2nd Edition. Sinauer Associates, Sunderland, Massachusetts.
[28]. Harvey, P.H., Leigh Brown, A.J. and Maynard Smith, J. (1995). New uses for new phylogenies: editors’ introduction. Philosophical Transactions of the Royal Society London Series B, 349: 3-4.
[29]. Harvey, P.H. and Pagel, M.D. (1991). The Comparative Method in Evolutionary Biology. Oxford: Oxford University Press.
[30]. Hennig, W. (1966). Phylogenetic Systematics. University of Illinois Press, Urbana.
[31]. Hillis, D.M. (1987). Molecular Versus Morphological approaches to systematics. Annual Review of Ecology and Systematics. 18: 23-42.
[32]. Hillis, D.M., Bull, J.J., White, M.E., Badgett, M.R. & Molineux, I.J. (1992). Experimental phylogenetics: generation of a known phylogeny. Science, 255: 589-592.
[33]. Hillis, D.M., Huelsenbeck, J.P. & Cunningham, C.W. (1994). Application and accuracy of molecular phylogenies. Science, 264: 671-677.
[34]. Hopkin, S.P. (1997). Biology of the Springtails—Insecta: Collembola. Oxford University Press. 330 pp.
[35]. Huelsenbeck, J.P. & Rannala, B. (1997). Phylogenetic Methods Come of Age: Testing Hypotheses in an Evolutionary Context. Science, 276: 227-232. DOI: 10.1126/science.276.5310.227.
[36]. Huelsenbeck, J.P. & K.A. Crandall (1997). Phylogeny Estimation and Hypothesis Testing Using Maximum Likelihood. Annual Review of Ecology and Systematics, 28: 437-466.
[37]. Huey, R.B. & A.F. Bennett (1987). Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution, 41: 1098-1115.
[38]. Koshi, J.M. & Goldstein, R.A. (1996). Probabilistic reconstruction of ancestral protein sequences. Journal of Molecular Evolution, 42: 313-320.
[39]. Lauder, G.V. (1982). Historical biology and the problem of design. Journal of Theoretical Biology, 97: 57-67.
[40]. Maddison, D.R. (1994). Phylogenetic Methods for Inferring the Evolutionary History and Processes of Change in Discretely Valued Characters. Annual Review of Entomology, 39: 267-292.
[41]. Maddison, D.R. & W.P. Maddison (2000). MacClade 4: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts.
[42]. Maddison, D.R., Ruvolo, M. & Swofford, D.L. (1992). Geographic origins of human mitochondrial DNA: Phylogenetic evidence from control region sequences. Systematic Biology, 41: 111-124.
[43]. Maddison, W.P. (1990). A method for testing the correlated evolution of two binary characters: Are gains or losses concentrated on certain branches of a phylogenetic tree? Evolution, 44: 539-557. doi: 10.1111/j.1558-5646.1990.tb05937.x.
[44]. Maddison, W.P. (1995). Calculating the probability distributions of ancestral states reconstructed by parsimony on phylogenetic trees. Systematic Biology, 44: 474-481.
[45]. Maddison, W.P. (1996). Molecular approaches and the growth of phylogenetic biology. Pages 47-63 in J.D. Ferraris and S.R. Palumbi (eds.). Molecular Zoology: Advances, strategies, and protocols. Wiley-Liss, New York.
[46]. Maddison, W.P. (1997). Gene trees in species trees. Systematic Biology, 46: 523-536.
[47]. Maddison, W.P. & Maddison, D.R. (1992). MacClade 3: Analysis of Phylogeny and Character Evolution. Sinauer Associates, Sunderland, Massachusetts.
[48]. Merritt, R.W., Cummins, K.W. & Berg, M.B., Eds. (2008). Aquatic Insects of North America. 4th Edition, Kendall/Hunt, Dubuque.
[49]. Mitter, C., Farrell, B. & Wiegmann, B. (1988). The Phylogenetic Study of Adaptive Zones: Has Phytophagy Promoted Insect Diversification? The American Naturalist, 132(1): 107-128.
[50]. Morrison, D.A. (1996). Phylogenetic tree-building. International Journal for Parasitology 26: 589-617.
[51]. Nelson, G. & N.I. Platnick (1981). Systematics and Biogeography: Cladistics and Vicariance. New York: Columbia University Press.
[52]. O'Hara, R.J. (1988). Homage to Clio, or, Toward an historical philosophy for evolutionary biology. Systematic Zoology, 37: 142-155.
[53]. Page, R.D.M. & E.C. Holmes (1998). Molecular Evolution: A Phylogenetic Approach. Blackwell Science, Oxford.
[54]. Pagel, M. (1994). Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proceedings of the Royal Society of London Series B 255: 37-45.
[55]. Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26: 331-348. doi:10.1111/j.1463-6409.1997.tb00423.x.
[56]. Pagel, M. (1999a). Inferring the historical patterns of biological evolution. Nature, 401: 877-884.
[57]. Pagel, M. (1999b). The Maximum Likelihood Approach to Reconstructing Ancestral. Character States of Discrete Characters on Phylogenies. Systematic Biology, 48: 612-622.
[58]. Penny, D., Hendy, M.D. and Steel, M.A. (1992). Progress with methods for constructing evolutionary trees. Trends in Ecology and Evolution, 7: 73-79.
[59]. Richard, E. White, Donald J. Borror, Roger Tory Peterson (1998). A Field Guide to Insects: America North of Mexico. Houghton Mifflin Co.
[60]. Ridley, M. (1983). The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Oxford: Clarendon Press.
[61]. Sessions, S.K. & Larson, A. (1987). Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. Evolution, 41:1239-1251. doi: 10.1111/j.1558-5646.1987.tb02463.x.
[62]. Sillén-Tullberg, B. (1988). Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution, 42:293-305. doi: 10.1111/j.1558-5646.1988.tb04133.x.
[63]. Steel, M. & D. Penny (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution, 17: 839-850.
[64]. Swofford, D.L. & Maddison, W.P. (1992) Parsimony, character-state reconstructions, and evolutionary inferences. In: Mayden, R.L. (ed.), Systematics, Historical Ecology, and North American Freshwater Fishes, Stanford: Stanford University Press, pp. 187-223.
[65]. Swofford, D.L. & Olsen, G.J. (1990). Phylogeny reconstruction. In: Hillis, D.M. and Moritz, C. (eds.), Molecular Systematics, Sinauer Associates, Sunderland, Massachusetts. pp 411–501.
[66]. Swofford, D.L., Olsen, G.J., Waddell, P.J. & Hillis, D.M. (1996). Phylogenetic Inference. In: Hillis, D.M., Moritz, C. and Mable, B.K., Eds., Molecular Systematics, 2nd Edition, Sinauer Associates, Sunderland (MA), 407-514.
[67]. Tuffley, C. & Steel, M. (1997). Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology, 59: 581-607.
[68]. Wanntorp, H., Brooks, D., Nilsson, T., Nylin, S., Ronquist, F., Stearns, S. & Wedell, N. (1990). Phylogenetic Approaches in Ecology. Oikos, 57(1), 119-132. doi: 10.2307/3565745.
[69]. Wiley, E.O. (1981). Phylogenetics: The Theory and Practice of Phylogenetic Systematics. Wiley.
[70]. Yang, Z.H. (1994b). Estimating the pattern of nucleotide substitution. Journal of Molecular Evolution, 39: 105-111.
[71]. Yang, Z.H. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Molecular Biology and Evolution, 10: 1396-1401.
[72]. Yang, Z.H. (1994a). Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal of Molecular Evolution, 39: 306-314.
[73]. Yang, Z., Kumar, S. & Nei, M. (1995). A new method of inference of ancestral nucleotide and amino acid sequences. Genetics, 141: 1641-1650.
Published
2017-01-01
How to Cite
Chandra, H., Singh, S., & Sharma, H. (2017). Phylogenetic study of Indian Collembolan: an evaluation in Uttar Pradesh. Journal of Advanced Laboratory Research in Biology, 8(1), 30-35. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/272
Section
Articles

Most read articles by the same author(s)