Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils)

  • Zaid Raad Abbas Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Sawsan Hassan Authman Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
  • Aqeel Mohammed Majeed Al-Ezee Department of Biology, College of Science, Al-Mustansiriyah University, Baghdad-Iraq.
Keywords: Biocontrol agent, Pantoea agglomerans, Iraqi soils

Abstract

The growth response of the biocontrol agent Pantoea agglomerans to changes in temperature was determined in vitro in nutrient yeast extract-sucrose medium. The minimum temperature at which P. agglomerans was able to grow was 4°C and the maximum temperature was 42°C. This study defines the range of environmental condition (Temperature) over which the bacteria may be developed for biocontrol of postharvest diseases.

Downloads

Download data is not yet available.

References

[1]. Hong, C.X. & Moorman, G.W. (2005). Plant Pathogens in Irrigation Water: Challenges and Opportunities. Critical Reviews in Plant Sciences, 24(3): 189-208. DOI: 10.1080/07352680591005838.
[2]. Han-Jen, R.E., Wai-Fong, Y. & Kok-Gan, C. (2013). Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. Sensors, 13(10): 14121-32. doi: 10.3390/s131014121.
[3]. Jain, S., Bohra, I., Mahajan, R., Jain, S. & Chugh, T.D. (2012). Pantoea agglomerans infection behaving like a tumor after plant thorn injury: an unusual presentation. Indian J. Pathol. Microbiol., 55(3): 386-388. doi: 10.4103/0377-4929.101754.
[4]. Sturz, A.V., Christie, B.R. & Nowak, J. (2000). Bacterial Endophytes: Potential Role in Developing Sustainable Systems of Crop Production. Critical Reviews in Plant Sciences, 19(1): 1-30. DOI: 10.1080/07352680091139169.
[5]. Chale-Matsau, J.R., Snyman, H.G. (2006). The survival of pathogens in soil treated with wastewater sludge and in potatoes grown in such soil. Water Sci. Technol., 54(5): 163-168.
[6]. Yamakawa, O. (1998). Development of new cultivation and utilization system for sweetpotato toward the 21st century. In: LaBonte, D.R., Yamashita, M., Mochida, H., editors. Proceedings of International Workshop on Sweet Potato System toward the 21st Century. Miyakonojo, 9-10 December. Miyakonojo, Japan: Kyushu National Agricultural Experiment Station; p. 1-8.
[7]. Csonka, L.N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev., 53(1): 121-147.
[8]. Yoneyama, T., Terakado, J. & Masuda, T. (1997). Possible input of N2-derived nitrogen in sweetpotato: investigation by the δ15N dilution method. In Sweetpotato Production System toward the 21st Century ed. LaBonte, D.R., Yamashita, M. and Mochida, H. pp. 311–316. Miyakonojo: Kyushu National Experiment Station.
[9]. Viñas, I., Usall, J., Nunes, C. & Teixidó, N. (1999). Nueva cepa bacteriana Pantoea agglomerans; Beijerinck (1888) Gavini, Mergaert, Beji, Mielcareck, Izard, Kersters y, De Ley (1989) y su utilización como agente de control biológico de las enfermedades fÚngicas de fruta. Solicitud P9900612. Oficina Española de Patentes y Marcas.
[10]. Wilson, C.L. and Pusey, P.L. (1985). Potential for Biological Control of Postharvest Plant Diseases. Plant Dis., 69:375–378. DOI: 10.1094/PD-69-375.
[11]. Atlas, R.M. (2010). Handbook of microbiological media. Fourth edition. Taylor and Francis Group, LLC, U.S.A.
[12]. Garrity, G., Brenner, D.J., Krieg, N.R. & Staley, J.R. (2005). Bergey's Manual of Systematic Bacteriology. Volume 2: The Proteobacteria. 2nd edition. Springer, USA.
[13]. Tang, Y.W. and Stratton, C.W. (2006). Advanced Techniques in Diagnostic Microbiology. Springer, U.S.A.
[14]. Costa, E., Teixidó, N., Usall, J., Atarés, E. & Viñas, I. (2001). Production of the biocontrol agent Pantoea agglomerans strain CPA-2 using commercial products and by-products. Appl. Microbiol. Biotechnol., 56(3-4): 367-371.
[15]. Jung, I., Park, D.H. & Park, K. (2002). A study of the growth condition and solubilization of phosphate from hydroxyapatite by Pantoea agglomerans. Biotechnology and Bioprocess Engineering, 7: 201-205.
[16]. Teixidó, N., Usall, J., Palou, L., Asensio, A., Nunes, C. & Viñas, I. (2001). Improving Control of Green and Blue Molds of Oranges by Combining Pantoea agglomerans (CPA-2) and Sodium Bicarbonate. Eur. J. Plant Pathol., 107: 685–694. doi: 10.1023/A:1011962121067
[17]. Rahman, M., Mubassara, S., Hoque, S., & Khan, Z. (2006). Effect of Some Environmental Factors on the Growth of Azospirillum Species Isolated from Saline Soils of Satkhira District, Bangladesh. Bangladesh Journal of Microbiology, 23(2), 145-148. https://doi.org/10.3329/bjm.v23i2.881.
[18]. Gould, G.W. (1989). Drying, raised osmotic pressure and low water activity. In: Gould, G.W. (ed). Mechanisms of action of food preservation procedure. Elsevier Applied Science. NY. pp. 97–117.
[19]. Nunes, C. (2001). Control biológico de las principales enfermedades fúngicas en postcosecha de fruta de pepita, mediente el uso de Candida sake (CPA-1) y Pantoea agglomerans (CPA-2). Ph.D. Thesis, Universitat de Lleida, Lleida, Spain.
Published
2017-10-01
How to Cite
Abbas, Z., Authman, S., & Al-Ezee, A. (2017). Temperature effects on growth of the biocontrol agent Pantoea agglomerans (An oval isolate from Iraqi soils). Journal of Advanced Laboratory Research in Biology, 8(4), 85-88. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/287
Section
Articles
Abstract viewed = 43 times, PDF downloaded = 24 times