Effects of Copper (Sulfate, Acetate and Nano) in ovo injection on Hatching Traits and some Physiological Parameters of Newly-hatched Broiler Chicks



Ovo injection, Cu sulfate, Cu acetate, Nano Cu, Hatching traits, Blood parameters


This study was conducted to investigate the effect of different sources of copper (sulfate, acetate and nano) in ovo injection at 10 days of embryogenesis period on hatching traits and some physiological parameters of newly-hatched broiler chicks. A total number of 462 fertile eggs were used (with an average weight of 66.24±0.23g in 7 groups, each group containing 66 fertile eggs in three replicate. The experimental design was as follows the group 1 as control, while the groups 2, 3 and 4 injected with 0.1ml deionized water containing 8?g/egg of Cu sulfate, Cu acetate and nano Cu, respectively, and the groups 5, 6 and 7 injected with 0.1ml deionized water containing 16?g/egg of Cu sulfate, Cu acetate and nano Cu, respectively. After hatching eight one-day chicks around the average of each group were used in this study and the results as follows, different sources of Cu in ovo injection at 10 days of incubation by two levels (8 and 16?g/egg) did not affect hatching traits except elevation  chick weight and chick weight %, did not affect yolk sac %, relative weight of organs (liver, gizzard, heart and bursa) of newly hatched chicks, did not affect hematological parameters and some plasma constituents, levels of 16µg/egg Cu led to increasing plasma Alb compared to the levels of 8µg/egg Cu and control, Cu sources at 8 or 16µg/egg decreased the values of AST enzyme.

From the results of this study, it can be concluded that using Cu sources in ovo injection at 10 days of incubation up to the level of 16?g/egg, did not cause harmful effect but caused best results in chick weight and chick weight %.


Download data is not yet available.


[1]. Azarnova, T.O., Yartseva, I.S. & Bobilkova, A.E. (2012). Hypothesis of Early Development of Chicken Embryos. Am. J. Biochem., 2(5): 51-55. doi: 10.5923/j.ajb.20120205.01.
[2]. Pineda, L., Chwalibog, A., Sawosz, E., Lauridsen, C., Engberg, R., Elnif, J., Hotowy, A., Sawosz, F., Gao, Y., Ali, A. & Moghaddam, H.S. (2012). Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch. Anim. Nutr., 66(5): 416–429. doi: 10.1080/1745039X.2012.710081.
[3]. Naber, E.C. (1979). The Effect of Nutrition on the Composition of Eggs. Poult. Sci., 58(3): 518–528. https://doi.org/10.3382/ps.0580518.
[4]. Angel, R. (2007). Metabolic Disorders: Limitations to Growth of and Mineral Deposition into the Broiler Skeleton after Hatch and Potential Implications for Leg Problems. J. Appl. Poult. Res., 16(1): 138–149. doi: 10.1093/japr/16.1.138.
[5]. Hajihosaini, M. & Mottaghitalab, M. (2004). Effect of amino acid injection in broiler breeder eggs on hatchability and growth of hatched chicken. J. Agric. Sci., 1: 23-32.
[6]. Tako, E., Ferket, P.R. & Uni, Z. (2004). Effects of in ovo feeding of carbohydrates and beta-hydroxy-beta-methylbutyrate on the development of chicken intestine. Poult. Sci., 83(12): 2023–2028. doi: 10.1093/ps/83.12.2023.
[7]. Noy, Y. & Uni, Z. (2010). Early nutritional strategies. World's Poult. Sci. J., 66(4): 639–646. doi: 10.1017/S0043933910000620.
[8]. Selim, Sh.A., Gaafar, K.M. and El-ballal, S.S. (2012). Influence of in-ovo administration with vitamin E and ascorbic acid on the performance of Muscovy ducks. Emir. J. Food Agric., 24(3): 264-271.
[9]. Peebles, E.D. (2018). In ovo applications in poultry: A review. Poult. Sci., 97(7): 2322–2338. doi: 10.3382/ps/pey081.
[10]. Uni, Z. & Ferket, R.P. (2004). Methods for early nutrition and their potential. World's Poult. Sci. J., 60(1): 101–111. doi: 10.1079/WPS20038.
[11]. Ferket, P.R., Uni, Z., Tako, E., Foye, O.T. & Oliveira, J.E. (2005). In ovo feeding nutrition: Impact on gene expression, gut development, and growth performance. p. 160-172. In: The Annual Nutrition Conference. University of Arkansas, Rogers, AR.
[12]. Chen, W.L., Wei, H.W., Chiu, W.Z., Kang, C.H., Lin, T.H., Hung, C.C., Chen, M.C., Shieh, M.S., Lee, C.C. & Lee, H.M. (2011). Metformin regulates hepatic lipid metabolism through activating AMP-activated protein kinase and inducing ATGL in laying hens. Eur. J. Pharmacol., 671(1-3): 107–112. doi: 10.1016/j.ejphar.2011.09.029.
[13]. Wilson, H.R. (1991). Interrelationships of egg size, chick size, posthatching growth and hatchability. World's Poult. Sci. J., 47(1): 5–20. doi: 10.1079/WPS19910002.
[14]. Melillo, A. (2013). Applications of serum protein electrophoresis in exotic pet medicine. Vet. Clin. North Am. Exot. Anim. Pract., 16(1): 211–225. doi: 10.1016/j.cvex.2012.11.002.
[15]. McDowell, L.R. (1992). Copper and molybdenum. Minerals in Animal and Human Nutrition. pp 176-204. Academic press Inc, San Diego, CA.
[16]. Fox, P.L. (2003). The copper-iron chronicles: the story of an intimate relationship. Biometals, 16(1): 9–40.
[17]. Gaetke, L.M. & Chow, C.K. (2003). Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology, 189(1-2): 147–163.
[18]. Mullally, A.M., Vogelsang, G.B. & Moliterno, A.R. (2004). Wasted sheep and premature infants: the role of trace metals in hematopoiesis. Blood Rev., 18(4): 227–234. doi: 10.1016/S0268-960X(03)00067-5.
[19]. Mroczek-Sosnowska, N., Sawosz, E., Vadalasetty, K.P., ?ukasiewicz, M., Niemiec, J., Wierzbicki, M., Kutwin, M., Jaworski, S. & Chwalibog, A. (2015). Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int. J. Mol. Sci., 16(3): 4838–4849. doi: 10.3390/ijms16034838.
[20]. Febré, N., Silva, V., Báez, A., Palza, H., Delgado, K., Aburto, I. & Silva, V. (2016). Antibacterial activity of copper salts against microorganisms isolated from chronic infected wounds. Rev. Med. Chil., 144(12): 1523–1530. doi: 10.4067/S0034-98872016001200003.
[21]. Khan, A., Rashid, A., Younas, R. & Chong, R. (2016). A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett., 6(1): 21–26. doi: 10.1007/s40089-015-0163-6.
[22]. Bhanja S.K., Mandal, A.B. & Johri, T.S. (2004). Standardization of injection site, needle length, embryonic age and concentration of amino acids for in ovo injection in broiler breeder eggs. Indian J. Poult. Sci., 39(2): 105-111.
[23]. SPSS (2016). Statistical Software Package for the Social Sciences. SPSS, Int., USA.
[24]. Duncan, D.B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1): 1–42. doi: 10.2307/3001478.
[25]. Goel, A., Bhanja, S.K., Mehra, M., Majumdar, S. & Pande, V. (2013). Effect of in ovo copper and iron feeding on post-hatch growth and differential expression of growth or immunity related genes in broiler chicks. Indian J. Poult. Sci., 48: 279-285.
[26]. Velleman, S.G. (2007). Muscle development in the embryo and hatchling. Poult. Sci., 86(5): 1050–1054. doi: 10.1093/ps/86.5.1050.
[27]. Scott, A., Vadalasetty, K.P., Sawosz, E., ?ukasiewicz, M., Vadalasetty, R.K.P., Jaworski, S. & Chwalibog, A. (2016). Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Anim. Feed Sci. Technol., 220: 151–158. doi: 10.1016/j.anifeedsci.2016.08.009.
[28]. Pineda, L., Sawosz, E., Vadalasetty, K.P. & Chwalibog, A. (2013). Effect of copper nanoparticles on metabolic rate and development of chicken embryos. Anim. Feed Sci. Technol., 186(1): 125–129. doi: 10.1016/j.anifeedsci.2013.08.012.
[29]. Miroshnikov, S.A., Yausheva, E.V., Sizova, E.A. & Miroshnikova, E.P. (2015). Comparative assessment of effect of copper nano- and microparticles in chicken. Orient. J. Chem., 31(4): 2327- 2336. Doi: http://dx.doi.org/10.13005/ojc/310461.
[30]. Flynn, N.E., Meininger, C.J., Haynes, T.E. & Wu, G. (2002). The metabolic basis of arginine nutrition and pharmacotherapy. Biomed. Pharmacother., 56(9): 427–438.
[31]. Wu, G., Knabe, D.A. & Kim, S.W. (2004). Arginine nutrition in neonatal pigs. J. Nutr., 134(10 Suppl): 2783S-2790S; discussion 2796S-2797S. doi: 10.1093/jn/134.10.2783S.
[32]. Venegas, D.P., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N. & Hermoso, M.A. (2019). Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol., 10: 1-16. doi: 10.3389/fimmu.2019.00277.
[33]. Lu, J.W., McMurtry, J.P. & Coon, C.N. (2007). Developmental changes of plasma insulin, glucagon, insulin-like growth factors, thyroid hormones, and glucose concentrations in chick embryos and hatched chicks. Poult. Sci., 86(4): 673–683. doi: 10.1093/ps/86.4.673.
[34]. Gabarrou, J.F., Duchamp, C., Williams, J. & Géraert, P.A. (1997). A role for thyroid hormones in the regulation of diet-induced thermogenesis in birds. Br. J. Nutr., 78(6): 963–973.




How to Cite

Arafat, A. R., Hassan, H. A., Farroh, K. Y., Elnesr, S. S., EL-wardany, I., & Bahnas, M. S. (2019). Effects of Copper (Sulfate, Acetate and Nano) in ovo injection on Hatching Traits and some Physiological Parameters of Newly-hatched Broiler Chicks. Journal of Advanced Laboratory Research in Biology, 10(3), 65–72. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/303