Sublethal Toxicity of Zinc Chloride on Antioxidant Enzyme activity of Catla catla (Hamilton)


  • K. H. Mariyam Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala-673635.
  • K. P. Greeshma Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala-673635.
  • K. A. Deepthi Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala-673635.
  • E. Pushpalatha Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Malappuram, Kerala-673635.


Heavy metal, Zinc chloride, Antioxidant enzymes, Catla catla


Fishes are extensively used for the assessment of the health of the aquatic ecosystem as their enzymes serve as pollution biomarkers. Heavy metals are one of the major pollutants discharged to the aquatic ecosystem as industrial effluents. The present study determined the alteration in enzyme activities in different tissue of Catla catla exposed to sublethal concentrations of zinc chloride. Catla catla were exposed to different concentration of zinc chloride and control were maintained without the zinc chloride. After 96 hour exposure, brain and muscle tissue from both control and experimental group were selected for enzyme assay. The biochemical studies show that acetylcholinesterase and catalase activity in both brain and muscle tissue were reduced after exposure, whereas glutathione S-transferase activity in both tissues were increased. Heavy metal pollution causes detrimental effects on fishes and constitutes potential risks for human health through consumption of contaminated fishes.


Download data is not yet available.


[1]. Begum, A., Harikrishna, S. & Khan, I. (2009). Analysis of heavy metals in water, sediments and fish samples of Madivala lakes of Bangalore, Karnataka. Int. J. Chem. Tech. Research, 1(2): 245-249.
[2]. Livingstone, M.B.E. & Black, A.E. (2003). Markers of the validity of reported energy intake. J. Nutr., 133(Suppl) 3: 895S-920S. doi: 10.1093/jn/133.3.895S.
[3]. Asghar, M.S., Quershi, N.A., Jabeen, F., Shakeel, M. & Khan, M.S. (2016). Genotoxicity and oxidative stress analysis in the Catla catla treated with ZnO NPs. J. Bio. Env. Sci., 8(4): 91-101.
[4]. Andres, S., Ribeyre, F., Tourencq, J.N. & Boudou, A. (2000). Interspecific comparison of cadmium and zinc contamination in the organs of four fish species along a polymetallic pollution gradient (Lot River, France). Sci. Total Environ., 248(1): 11–25.
[5]. Papagiannis, I., Kagalou, I., Leonardos, J., Petridis, D. & Kalfakakou, V. (2004). Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ. Int., 30(3): 357–362. doi: 10.1016/j.envint.2003.08.002.
[6]. Köck, G., Triendl, M. & Hofer, R. (1996). Seasonal patterns of metal accumulation in Arctic char (Salvelinus alpinus) from an oligotrophic Alpine lake related to temperature. Can. J. Fish. Aquat. Sci., 53(4): 780-786.
[7]. Lakra, W.S. & Nagpure, N.S. (2009). Genotoxicological studies in fishes: A review. Indian J. Anim. Sci., 79(1): 93–97.
[8]. van der Oost, R., Beyer, J. & Vermeulen, N.P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol., 13(2): 57–149.
[9]. Ellman, G.L., Courtney, K.D., Andres, V. Jr. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7(2): 88–95. doi: 10.1016/0006-2952(61)90145-9.
[10]. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1): 265–275.
[11]. Sinha, A.K. (1972). Colorimetric assay of catalase. Anal. Biochem., 47(2): 389–394.
[12]. Habig, W.H., Pabst, M.J. & Jakoby, W.B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249(22): 7130–7139.
[13]. dos Santos Miron, D., Crestani, M., Rosa Shettinger, M., Maria Morsch, V., Baldisserotto, B., Angel Tierno, M., Moraes, G. & Vieira, V.L. (2005). Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol. Environ. Saf., 61(3): 398–403. doi: 10.1016/j.ecoenv.2004.12.019.
[14]. Suresh, A., Sivaramakrishna, B., Victoriamma, P.C. & Radhakrishnaiah, K. (1991). Shifts in protein metabolism in some organs of freshwater fish, Cyprinus carpio under mercury stress. Biochem. Int., 24(2): 379–389.
[15]. Patil, S.M. & Hande, R.S. (2004). In vitro studies of Ferrous Chloride on brain acetylcholinesterases of Arius nenga, a marine teleost. Poll. Res., 23(4): 783-786.
[16]. Solé, M., Baena, M., Arnau, S., Carrasson, M., Maynou, F. & Cartes, J.E. (2010). Muscular cholinesterase activities and lipid peroxidation levels as biomarkers in several Mediterranean marine fish species and their relationship with ecological variables. Environ. Int., 36(2): 202–211. doi: 10.1016/j.envint.2009.11.008.
[17]. Loro, V.L., Jorge, M.B., Silva, K.R.d. & Wood, C.M. (2012). Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost, Fundulus heteroclitus: protective effects of salinity. Aquat. Toxicol., 110-111: 187–193. doi: 10.1016/j.aquatox.2012.01.012.
[18]. Singh, S.M. & Sivalingam, P.M. (1982). In vitro study on the interactive effects of heavy metals on catalase activity of Sarotherodon mossambicus (Peters). Journal of Fish Biology, 20(6): 683–688. doi: 10.1111/j.1095-8649.1982.tb03978.x.
[19]. Ballesteros, M.L., Wunderlin, D.A. & Bistoni, M.A. (2009). Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol. Environ. Saf., 72(1): 199–205. doi: 10.1016/j.ecoenv.2008.01.008
[20]. Ballesteros, M.L., Durando, P.E., Nores, M.L., Díaz, M.P., Bistoni, M.A., Wunderlin, D.A. (2009). Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ. Pollut., 157(5): 1573–1580. doi: 10.1016/j.envpol.2009.01.001.
[21]. Joseph K. Saliu & Kafilat A. Bawa-Allah (2012). Toxicological Effects of Lead and Zinc on the Antioxidant Enzyme Activities of Post Juvenile Clarias gariepinus. Resources and Environment, 2(1): 21-26. doi: 10.5923/




How to Cite

Mariyam, K. H., Greeshma, K. P., Deepthi, K. A., & Pushpalatha, E. (2019). Sublethal Toxicity of Zinc Chloride on Antioxidant Enzyme activity of Catla catla (Hamilton). Journal of Advanced Laboratory Research in Biology, 10(3), 91–94. Retrieved from