Biochemical effects of Organophosphorus pesticide, Quinalphos on freshwater fish, Oreochromis niloticus (L.)

  • K. P. Greeshma Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India.
  • K. H. Mariyam Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India.
  • Laya Paul Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India.
  • E. Pushpalatha Biopesticides and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India. http://orcid.org/0000-0002-1859-6338
Keywords: Oreochromis niloticus, Quinalphos, Glutathione S-transferase, Catalase, Acetylcholinesterase

Abstract

Quinalphos is a synthetic organophosphorus broad-spectrum insecticide, widely used to control insect pests in agriculture. In the present study, an attempt has been made to investigate the biochemical effect of quinalphos on different tissues like liver and brain of the edible freshwater fish Oreochromis niloticus (L). The O. niloticus were exposed to sublethal concentrations of quinalphos for two different periods of time (1 day and 5 days). From the result, the protein content and acetylcholinesterase enzyme in the tested tissues of O. niloticus was found to decline with increasing exposure periods of quinalphos. Activity of antioxidant enzymes glutathione S-transferase and catalase shows a significant change in their level compared to the control. The present study suggests that quinalphos in sublethal dose altered antioxidant balance of the fish which cause severe oxidative stress. Therefore, the use of quinalphos in the agriculture may be a threat to aquatic population and also other organisms including human beings via food chain.

Downloads

Download data is not yet available.

References

[1]. Aswin, B., Binu Kumari, S., Ravisankar, S., Mohan Kumar, M., Ambikadevi, A.P. & Drishya, M.K. (2016). The effect of quinalphos on histopatholagical changes in the Gills of freshwater fish, Anabas testudineus. IOSR Journal of Environmental Science, Toxicology and Food Technology, 10(4): 12-16.
[2]. Chebbi, S.G. & David, M. (2011). Modulation in the Protein Metabolism under Sublethal Concentration of Quinalphos Intoxication in the Freshwater Common Carp, Cyprinus carpio (Linnaeus, 1758). Int. J. Pharm. Biol. Arch., 2(4): 1183-1189.
[3]. Pimentel, D. (1995). Amounts of pesticides reaching target pests: Environmental impacts and ethics. J. Agric. Environ. Ethics, 8(1): 17–29. doi: 10.1007/BF02286399.
[4]. Chitra, K.C., Nikhila, P. & Asifa, K.P. (2013). Short-term exposure to quinalphos induced biochemical and haematological changes in freshwater fish, Oreochromis mossambicus. J. Adv. Lab. Res. Biol., 4(1): 1-6.
[5]. APHA (2005). Standard Methods for the Examination of Water and Wastewater. 21st Edition, American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC.
[6]. Finney, D.J. (1971). Probit Analysis. 3rd Edition, Cambridge University Press.
[7]. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193(1): 265–275.
[8]. Sinha, A.K. (1972). Colorimetric assay of catalase. Anal. Biochem., 47(2): 389–394.
[9]. Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 7(2): 88–95. doi: 10.1016/0006-2952(61)90145-9.
[10]. Beutler, E. (1986). Red Cell Metabolism. Churchill Livingstone, Edinburgh, New York.
[11]. Deka, S. & Mahanta, R. (2016). Malathion toxicity on fish - A review. Int. J. Curr. Res., 8(12): 44120-44128.
[12]. Saravanan, R. (2008). Lambda Cyhalothrin Induced Changes in Protein Metabolism of Various Tissues in Freshwater Catfish Clarias batrachus. Nature Environ. Pollut. Technol., 7(4): 579-584.
[13]. Agrahari, S., Gopal, K. & Pandey, K.C. (2006). Biomarkers of monocrotophos in a freshwater fish Channa punctatus (Bloch). J. Environ. Biol., 27(2 Suppl): 453-457.
[14]. Koudinya, P.R. & Ramamurthi, R. (1978). Effect of sumithion (Fenitrothion) on some selected enzyme systems in the fish Tilapia mossambica (Peters). Indian J. Exp. Biol., 16(7): 809–811.
[15]. Sastry, K.V. & Siddiqui, A.A. (1984). Some hematological, biochemical, and enzymological parameters of a fresh-water teleost fish, Channa punctatus, exposed to sublethal concentrations of quinalphos. Pestic. Biochem. Physiol., 22(1): 8–13. doi: 10.1016/0048-3575(84)90003-8.
[16]. Worek, F., Eyer, P. & Thiermann, H. (2012). Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test. Anal., 4(3-4): 282–291. doi: 10.1002/dta.337.
[17]. Sahib, I.K.A., Sailatha, D. & Ramana Rao, K.V. (1980). Impact of malathion on acetylcholinesterase in the tissues of the fish Tilapia mossambica (Peters)–A time course study. J. Biosci., 2(1): 37-41.
[18]. Naveed, A., Venkateshwarlu, P. & Janaiah, C. (2010). Impact of sublethal concentration of triazophos on regulation of protein metabolism in the fish Channa punctatus (Bloch). Afr. J. Biotechnol., 9(45): 7753–7758.
[19]. Abhijith, B.D., Ramesh, M. & Poopal, R.K. (2016). Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. J. Basic Appl. Zool., 77: 31–40. doi: 10.1016/j.jobaz.2015.11.002.
[20]. Sharma, Y., Bashir, S., Irshad, M., Gupta, S.D. & Dogra, T.D. (2005). Effects of acute dimethoate administration on antioxidant status of liver and brain of experimental rats. Toxicology, 206(1): 49–57. doi: 10.1016/j.tox.2004.06.062.
[21]. Mani, R., Meena, B., Valivittan, K. & Suresh, A. (2014). Glutathione-S-Transferase and Catalase activity in different tissues of marine Catfish (Arius arius) on exposure to Cadmium. Int. J. Pharm. Pharm. Sci., 6(1): 326-332.
[22]. Aniladevi Kunjamma, K.P. (2008). Biochemical effects of the pesticide chlorpyrifos on the fresh water fish Oreochromis mossambicus (Peters). Dissertation, Cochin University of Science and Technology.
[23]. Ansari, S. & Ansari, B.A. (2014). Toxic Effect of Alphamethrin on Catalase, Reduced Glutathione and Lipid Peroxidation in the Gill and Liver of Zebrafish, Danio rerio. World J. Zool., 9(3): 155-161. DOI: 10.5829/idosi.wjz.2014.9.3.84291.
[24]. Tripathi, G. & Singh, H. (2013). Impact of alphamethrin on biochemical parameters of Channa punctatus. J. Environ. Biol., 34(2): 227–230.
[25]. Oruç, E.O. & Uner, N. (2002). Marker enzyme assessment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl. J. Biochem. Mol. Toxicol., 16(4): 182–188. doi: 10.1002/jbt.10040.
Published
2019-07-05
How to Cite
Greeshma, K., Mariyam, K., Paul, L., & Pushpalatha, E. (2019). Biochemical effects of Organophosphorus pesticide, Quinalphos on freshwater fish, Oreochromis niloticus (L.). Journal of Advanced Laboratory Research in Biology, 10(3), 95-99. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/311
Section
Articles
Abstract viewed = 64 times, PDF downloaded = 17 times