Electric Bacteria: A Review



Electric bacteria, Shewanella, Geobacter, Nanowires, Microbial fuel cell, Bioremediation


Electromicrobiology is the field of prokaryotes that can interact with charged electrodes, and use them as electron donors/acceptors. This is done via a method known as extracellular electron transport. EET?capable bacterium can be used for different purposes, water reclamation, small power sources, electrosynthesis and pollution remedy. Research on EET?capable bacterium is in its early stages and most of the applications are in the developmental phase, but the scope for significant contributions is high and moving forward.


Download data is not yet available.


[1]. Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M. & Lovley, D.R. (2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Applied and Environmental Microbiology, 69(10): 5884–5891. doi: 10.1128/aem.69.10.5884-5891.2003.
[2]. Badwal, S.P., Giddey, S.S., Munnings, C., Bhatt, A.I. & Hollenkamp, A.F. (2014). Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry, 2: 79. doi: 10.3389/fchem.2014.00079.
[3]. Bennetto, H.P. (1990). Electricity Generation by Micro-organisms. Biotechnology Education, 1(4): 163–168.
[4]. Bergel, A., Feron, D. & Mollica, A. (2005). Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochemistry Communication, 7: 900-904.
[5]. Brahic, C. (2014). The electricity eaters. New Sci., 223(2978): 8–9. doi: 10.1016/S0262-4079(14)61375-0.
[6]. Cahoon, L.A. & Freitag, N.E. (2018). The electrifying energy of gut microbes. Nature, 562, 43–44. doi: 10.1038/d41586-018-06180-z.
[7]. Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M. & Liu, H. (2019). Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb. Cell Fact., 18: 39. https://doi.org/10.1186/s12934-019-1087-z.
[8]. Cheng, K.Y., Ho, G. & Cord-Ruwisch, R. (2008). Affinity of microbial fuel cell biofilm for the anodic potential. Environ. Sci. Technol., 42(10): 3828–3834. doi: 10.1021/es8003969.
[9]. Cologgi, D.L., Lampa-Pastirk, S., Speers, A.M., Kelly, S.D. & Reguera, G. (2011). Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc. Natl. Acad. Sci. U.S.A., 108(37): 15248–15252. doi: 10.1073/pnas.1108616108.
[10]. Dikow, R.B. (2011). Genome-level homology and phylogeny of Shewanella (Gammaproteobacteria: lteromonadales: Shewanellaceae). BMC Genomics, 12: 237. doi: 10.1186/1471-2164-12-237.
[11]. Du, Z., Li, H. & Gu, T. (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv., 25(5): 464–482. doi: 10.1016/j.biotechadv.2007.05.004.
[12]. Ebrahimi, A., Najafpour, G.D. & Yousefi Kebria, D. (2018). Performance of microbial desalination cell for salt removal and energy generation using different catholyte solutions. Desalination, 432: 1–9. doi: 10.1016/j.desal.2018.01.002.
[13]. El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H. & Gorby, Y.A. (2010). Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. U.S.A., 107(42): 18127-31. doi: 10.1073/pnas.1004880107.
[14]. Franks, A.E. & Nevin, K.P. (2010). Microbial Fuel Cells, A Current Review. Energies, 3(5): 899-919. https://doi.org/10.3390/en3050899.
[15]. Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., Culley, D.E., Reed, S.B., Romine, M.F., Saffarini, D.A., Hill, E.A., Shi, L., Elias, D.A., Kennedy, D.W., Pinchuk, G., Watanabe, K., Ishii, S., Logan, B., Nealson, K.H. & Fredrickson, J.K. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U.S.A., 103(30): 11358–11363. doi: 10.1073/pnas.0604517103.
[16]. Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., et al., (2002). Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nat. Biotechnol., 20: 1118–1123. https://doi.org/10.1038/nbt749.
[17]. Jiang, S., Kim, M.G., Kim, S.J., Jung, H.S., Lee, S.W., Noh, do Y., Sadowsky, M.J. & Hur, H.G. (2011). Bacterial formation of extracellular U(VI) nanowires. Chemical Communications, 47(28): 8076–8078. doi: 10.1039/c1cc12554k.
[18]. Kim, I.S., Chae, K.-J., Choi, M.-J. & Verstraete, W. (2008). Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application beyond Electricity Generation. Environmental Engineering Research, 13(2): 51–65. doi:https://doi.org/10.4491/eer.2008.13.2.051.
[19]. Kirchhofer, N.D., Rengert, Z.D., Dahlquist, F.W., Nguyen, T.-Q. & Bazan, G.C. (2017). A Ferrocene-based Conjugated Oligoelectrolyte Catalyzes Bacterial Electrode Respiration. Chem, 2(2): 240–257. doi: 10.1016/j.chempr.2017.01.001.
[20]. Kodesia, A., Ghosh, M. & Chatterjee, A. (2017). Development of Biofilm Nanowires and Electrode for Efficient Microbial Fuel Cells (MFCs). Thapar University Digital Repository (TuDR).
[21]. Light, S.H., Su, L., Rivera-Lugo, R., Cornejo, J.A., Louie, A., Iavarone, A.T., Ajo-Franklin, C.M. & Portnoy, D.A. (2018). A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria. Nature, 562: 140–144. https://doi.org/10.1038/s41586-018-0498-z.
[22]. Lovley, D.R., Ueki, T., Zhang, T., Malvankar, N.S., Shrestha, P.M., Flanagan, K.A., Aklujkar, M., Butler, J.E., Giloteaux, L., Rotaru, A-E., Holmes, D.E., Franks, A.E., Orellana, R., Risso, C. & Nevin, K.P. (2011). Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv. Microb. Physiol., 59: 1-100. Doi: 10.1016/B978-0-12-387661-4.00004-5.
[23]. Lu, Z., Chang, D., Ma, J., Huang, G., Cai, L. & Zhang, L. (2015). Behavior of metal ions in bioelectrochemical systems: A review. J. Power Sources, 275: 243–260. doi: 10.1016/j.jpowsour.2014.10.168.
[24]. Malvankar, N.S., Vargas, M., Nevin, K.P., Franks, A.E., Leang, C., Kim, B.C., Inoue, K., Mester, T., Covalla, S.F., Johnson, J.P., Rotello, V.M., Tuominen, M.T. & Lovley, D.R. (2011). Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol., 6(9): 573–579. doi: 10.1038/nnano.2011.119.
[25]. Malvankar, N.S. & Lovley, D.R. (2012). Microbial Nanowires: A New Paradigm for Biological Electron Transfer and Bioelectronics. ChemSusChem., 5(6): 1039–1046. doi: 10.1002/cssc.201100733.
[26]. Malvankar, N.S. & Lovley, D.R. (2014). Microbial nanowires for bioenergy applications. Curr. Opin. Biotechnol., 27: 88–95. doi: 10.1016/j.copbio.2013.12.003.
[27]. Maruthupandy, M., Anand, M. & Maduraiveeran, G. (2017). Fabrication of CuO nanoparticles coated bacterial nanowire film for a high-performance electrochemical conductivity. J. Mater. Sci., 52: 10766–10778. doi: 10.1007/s10853-017-1248-6.
[28]. Min, B., Cheng, S. & Logan, B.E. (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39(9): 1675–1686. doi: 10.1016/j.watres.2005.02.002.
[29]. Nealson, K.H. (2017). Bioelectricity (electromicrobiology) and sustainability. Microb. Biotechnol., 10(5): 1114-1119. doi: 10.1111/1751-7915.12834.
[30]. Nielsen, L.P. (2019). Electric bacteria in the spotlight. Electromicrobiology -- from electrons to ecosystems. Aarhus University, Denmark.
[31]. Pant, D., Van Bogaert, G., Diels, L. & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol., 101(6): 1533–1543. doi: 10.1016/j.biortech.2009.10.017.
[32]. Perpetuo, E.A., Souza, C.B. & Nascimento, C.A.O. (2011). Engineering Bacteria for Bioremediation, Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, Angelo Carpi, IntechOpen, DOI: 10.5772/19546.
[33]. Pirbadian, S. & El-Naggar, M.Y. (2012). Multistep hopping and extracellular charge transfer in microbial redox chains. Physical Chemistry Chemical Physics, 14(40): 13802–13808. doi: 10.1039/c2cp41185g.
[34]. Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H. & El-Naggar, M.Y. (2014). Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc. Natl. Acad. Sci. U.S.A., 111(35): 12883–12888. doi: 10.1073/pnas.1410551111.
[35]. Poddar, S. & Khurana, S. (2011). Geobacter: the electric microbe! Efficient microbial fuel cells to generate clean, cheap electricity. Indian Journal of Microbiology, 51(2): 240–241. doi: 10.1007/s12088-011-0180-8.
[36]. Polizzi, N.F., Skourtis, S.S. & Beratan, D.N. (2012). Physical constraints on charge transport through bacterial nanowires. Faraday Discuss., 155: 43-62. doi: 10.1039/c1fd00098e.
[37]. Rashid, N., Cui, Y.F., Saif Ur Rehman, M. & Han, J.I. (2013). Enhanced electricity generation by using algae biomass and activated sludge in microbial fuel cell. The Science of the Total Environment, 456-457: 91–94. doi: 10.1016/j.scitotenv.2013.03.067.
[38]. Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T. & Lovley, D.R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045): 1098–1101. doi: 10.1038/nature03661.
[39]. Reguera, G., Nevin, K.P., Nicoll, J.S., Covalla, S.F., Woodard, T.L. & Lovley, D.R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol., 72(11): 7345–7348. doi: 10.1128/AEM.01444-06.
[40]. Rizwan, Md., Singh, M., Mitra, C.K. & Morve, R.K. (2014). Ecofriendly Application of Nanomaterials: Nanobioremediation. Journal of Nanoparticles, Article ID 431787, 7 pages. doi: 10.1155/2014/431787.
[41]. Saeed, H.M., Husseini, G.A., Yousef, S., Saif, J., Al-Asheh, S., Fara, A.A., Azzam, S., Khawaga, R. & Aidan, A. (2015). Microbial desalination cell technology: A review and a case study. Desalination, 359: 1–13. DOI: 10.1016/j.desal.2014.12.024.
[42]. Scholz, F., Mario, J. & Chaudhuri, S.K. (2003). Bacterial Batteries. Nat. Biotechnol., 21(10): 1151-1152.
[43]. Strik, D.P.B.T.B., Hamelers (Bert), H.V.M., Snel, J.F.H. & Buisman, C.J.N. (2008). Green electricity production with living plants and bacteria in a fuel cell. Int. J. Energy Res., 32: 870-876. doi:10.1002/er.1397.
[44]. Sure, S., Ackland, M.L., Torriero, A.A.J., Adholeya, A. & Kochar, M. (2016). Microbial nanowires: an electrifying tale. Microbiology, 162(12): 2017–2028. doi: 10.1099/mic.0.000382.
[45]. Torres, C. (2012). Improving microbial fuel cells. Membrane Technology, 8: 8–9. https://doi.org/10.1016/S0958-2118(12)70165-9.
[46]. University of California, Berkeley (2018). Gut bacteria’s shocking secret: They produce electricity. UC Berkeley. Retrieved from https://news.berkeley.edu/2018/09/12/gut-bacterias-shocking-secret-they-produce-electricity.
[47]. Wang, Q., Jones, A.-A.D., Gralnick, J.A., Lin, L. & Buie, C.R. (2019). Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity. Sci. Adv., 5(1): eaat5664. doi: 10.1126/sciadv.aat5664.
[48]. White, G.F., Shi, Z., Shi, L., Wang, Z., Dohnalkova, A.C., Marshall, M.J., Fredrickson, J.K., Zachara, J.M. Butt, J.N., Richardson, D.J. & Clarke, T.A. (2013). Electron exchange between cytochromes and minerals. Proc. Natl. Acad. Sci. U.S.A., 110(16): 6346-6351. DOI: 10.1073/pnas.1220074110.




How to Cite

Mukhaifi, E. A., & Abduljaleel, S. A. (2020). Electric Bacteria: A Review. Journal of Advanced Laboratory Research in Biology, 11(1), 7–15. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/323