Heavy metal and antibiotic resistance of Acinetobacter spp. isolated from diesel fuel polluted soil


  • Kais Kassim Ghaima Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq. http://orcid.org/0000-0001-7849-0191
  • Noor Saad Lateef Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.
  • Zainab Thamer Khaz'al Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq.


Acinetobacter, Soil, Multiple metal, Antibiotics resistance


Heavy metals pollution of soil and wastewater is a global problem that threatens the environment as they are not degraded or removed and the potential threat to human health comes from the multiple resistances to heavy metals and antibiotics among bacterial populations. The present study was aimed to isolate and identify multiple metal/antibiotic resistant Acinetobacter spp. from diesel fuel polluted soil of Al-Dora, Baghdad, Iraq. Initially, a total of 24 bacterial cultures (coded KNZ–1 to KNZ–24) were isolated and identified up to genus level as Acinetobacter by morphological, physiological and biochemical characteristics. Screening of heavy metals resistant Acinetobacter were conducted by streaking the isolates on nutrient agar plates supplemented with different concentrations: 10, 25, 50 and 100mg/L of the three heavy metals; Hg2+, Cd2+ and Pb2+. Out of 24 isolates, 6 (25%) isolates (KNZ–3, KNZ–5, KNZ–8, KNZ–12, KNZ–16 and KNZ–21) were selected as a multiple heavy metal resistant (MHMR) Acinetobacter with maximum tolerable concentrations (MTCs); 100–200mg/L for Hg2+, 300-600mg/L for Cd2+ and 100–300mg/L for Pb2+. Antibiotic resistance pattern of the selected MHMR isolates was determined by Kirby-Bauer disc diffusion method against 12 different antibiotics belonging to 7 classes. Out of 6 isolates, 4 isolates were multidrug resistance (MDR) with varying degrees. Among them isolate, KNZ–16 showed a wide range of resistance to all tested antibiotics except Levofloxacin and Imipenem. It was concluded that dual resistant Acinetobacter is useful in the bioremediation of environments polluted with heavy metals especially the biodegradation of organic pollutants.


Download data is not yet available.


Weis, J.S. & Weis, P. (2002). Contamination of saltmarsh sediments and biota by CCA treated wood walkways. Mar. Pollut. Bull., 44(6): 504–510. https://doi.org/10.1016/S0025-326X(01)00294-6.

Husaini, A., Roslan, H.A., Hii, K.S.Y. & Ang, C.H. (2008). Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. World J. Microbiol. Biotechnol., 24(12): 2789–2797. https://doi.org/10.1007/s11274-008-9806-3.

Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z. & Zhu, Y.G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut., 152(3): 686–692. https://doi.org/10.1016/j.envpol.2007.06.056.

Zhang, M.K., Liu, Z.Y. & Wang, H. (2010). Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Commun. Soil Sci. Plant Anal., 41(7): 820–831. https://doi.org/10.1080/00103621003592341.

Ling, W., Shen, Q., Gao, Y., Gu, X. & Yang, Z. (2007). Use of bentonite to control the release of copper from contaminated soils. Aust. J. Soil Res., 45(8): 618-623. https://doi.org/10.1071/SR07079.

Boonchan, S., Britz, M.L. & Stanley, G.A. (2000). Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl. Environ. Microbiol., 66(3): 1007–1019. https://doi.org/10.1128/AEM.66.3.1007-1019.2000.

Wuertz, S. & Mergeay, M. (1997). The impact of heavy metals on soil microbial communities and their activities. In: van Elsas, J.D., Trevors, J.T. & Wellington, E.M.H. (Eds.), Modern soil microbiology. Marcel Dekker, New York. pp. 607–639.

Garhwal, D., Vaghela, G., Panwala, T., Revdiwala, S., Shah, A. & Mulla, S. (2014). Lead tolerance capacity of clinical bacterial isolates and change in their antibiotic susceptibility pattern after exposure to a heavy metal. Int. J. Med. Public Health, 4(3): 253-256. http://dx.doi.org/10.4103/2230-8598.137711.

Jan, A.T., Azam, M., Ali, A. & Haq, Q.M.R. (2014). Prospects for Exploiting Bacteria for Bioremediation of Metal Pollution. Crit. Rev. Environ. Sci. Technol., 44(5): 519–560. https://doi.org/10.1080/10643389.2012.728811.

Wang, Y., Tian, Y., Han, B., Zhao, H.B., Bi, J.N. & Cai, B.L. (2007). Biodegradation of phenol by free and immobilized Acinetobacter sp. strain PD12. J. Environ. Sci., 19(2): 222–225. https://doi.org/10.1016/s1001-0742(07)60036-9.

Trevors, J.T., Oddie, K.M. & Belliveau, B.H. (1985). Metal resistance in bacteria. FEMS Microbiol. Lett., 32(1): 39–54. https://doi.org/10.1016/0378-1097(85)90025-4.

Holt, J.G., Krieg, N.R., Sneath, P.H.A., Staley, J.T. & Williams, S.T. (1994). Bergey’s Manual of Determinative Bacteriology (Ninth Edition). Williams & Wilkins, Baltimore.

Ünaldi Coral, M.N., Korkmaz, H., Arikan, B. & Coral, G. (2005). Plasmid mediated heavy metal resistances in Enterobacter spp. isolated from Sofulu landfill, in Adana, Turkey. Ann. Microbiol., 55(3): 175–179.

Fasim, F., Ahmed, N., Parsons, R. & Gadd, G.M. (2002). Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett., 213(1): 1–6. https://doi.org/10.1111/j.1574-6968.2002.tb11277.x.

Loureiro, M.M., de Moraes, B.A., Quadra, M.R.R., Pinheiro, G.S. & Asensi, M.D. (2002). Study of multi-drug resistant microorganisms isolated from blood cultures of hospitalized newborns in Rio de Janeiro city, Brazil. Braz. J. Microbiol., 33(1): 73–78. https://doi.org/10.1590/S1517-83822002000100015.

CLSI (2011). Performance standards for antimicrobial susceptibility testing; 21st Informational Supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute, Wayne, Pennsylvania.

Olaniran, A.O., Balgobind, A. & Pillay, B. (2013). Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. Int. J. Mol. Sci., 14(5): 10197–10228. https://doi.org/10.3390/ijms140510197.

Sundar, K., Vidya, R., Mukherjee, A. & Chandrasekaran, N. (2010). High Chromium Tolerant Bacterial Strains from Palar River Basin: Impact of Tannery Pollution. Res. J. Environ. Earth Sci., 2(2): 112-117.

Ezaka, E. & Anyanwu, C.U. (2011). Chromium (VI) tolerance of bacterial strains isolated from sewage oxidation ditch. Int. J. Environ. Sci., 1(7): 1725–1734.

Francisco, R., Alpoim, M.C. & Morais, P.V. (2002). Diversity of chromium-resistant and -reducing bacteria in a chromium-contaminated activated sludge. J. Appl. Microbiol., 92(5): 837–843. https://doi.org/10.1046/j.1365-2672.2002.01591.x.

Wang, X. & Bartha, R. (1990). Effects of bioremediation on residues, activity and toxicity in soil contaminated by fuel spills. Soil Biol. Biochem., 22(4): 501–505. https://doi.org/10.1016/0038-0717(90)90185-3.

Alexander, M. (1999). Biodegradation and Bioremediation. 2nd Edition, Academic Press, San Diego, CA. pp. 453.

Díaz-Ramírez, I.J., Escalante-Espinosa, E., Favela-Torres, E., Gutiérrez-Rojas, M. & Ramírez-Saad, H. (2008). Design of bacterial defined mixed cultures for biodegradation of specific crude oil fractions, using population dynamics analysis by DGGE. Int. Biodeterior. Biodegrad., 62(1): 21-30. http://dx.doi.org/10.1016/j.ibiod.2007.11.001.

Hassan, S.H., Abskharon, R.N., El-Rab, S.M. & Shoreit, A.A. (2008). Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt. J. Basic Microbiol., 48(3): 168–176. https://doi.org/10.1002/jobm.200700338.

Bejestani, F.B., Ghane, M., Mirhosseininia, M. & Bejestani, O.B. (2013). Isolation and phylogenetic analysis of zinc resistant Acinetobacter sp. and its potential for bioremediation. Afr. J. Biotechnol., 12(26): 4123–4128. https://doi.org/10.5897/AJB2013.12128.

Rohini, B. & Jayalakshmi, S. (2015). Bioremediation potential of Bacillus cereus against copper and other heavy metals. Int. J. Adv. Res. Biol. Sci., 2(2): 200–209.

Haferburg, G. & Kothe, E. (2010). Metallomics: lessons for metalliferous soil remediation. Appl. Microbiol. Biotechnol., 87(4): 1271–1280. https://doi.org/10.1007/s00253-010-2695-z.

Tiku, D.R., Antai, S.P., Asitok, A.D. & Ekpenyong, M.G. (2016). Hydrocarbon biodegradation, heavy metal tolerance, and antibiotic resistance among bacteria isolates from petroleum polluted and Pristine soil samples in Calabar Metropolis. Imp. J. Interdiscip. Res., 2(11): 1448–1462.

Tamtam, F., van Oort, F., Le Bot, B., Dinh, T., Mompelat, S., Chevreuil, M., Lamy, I. & Thiry, M. (2011). Assessing the fate of antibiotic contaminants in metal contaminated soils four years after cessation of long-term waste water irrigation. Sci. Total Environ., 409(3): 540–547. https://doi.org/10.1016/j.scitotenv.2010.10.033.

Mgbemena, I.C., Nnokwe, J.C., Adjeroh, L.A. & Onyemekara, N.N. (2012). Resistance of Bacteria Isolated from Otamiri River to Heavy Metals and Some Selected Antibiotics. Cur. Res. J. Biol. Sci., 4(5): 551-556.

Li, L.G., Xia, Y. & Zhang, T. (2017). Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J., 11: 651–662. https://doi.org/10.1038/ismej.2016.155.

Aktan, Y., Tan, S. & Icgen, B. (2013). Characterization of lead-resistant river isolate Enterococcus faecalis and assessment of its multiple metal and antibiotic resistance. Environ. Monit. Assess., 185(6): 5285–5293. https://doi.org/10.1007/s10661-012-2945-x.

Blanco, P., Hernando-Amado, S., Reales-Calderon, J.A., Corona, F., Lira, F., Alcalde-Rico, M., Bernardini, A., Sanchez, M.B. & Martinez, J.L. (2016). Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants. Microorganisms, 4(1): 14. https://doi.org/10.3390/microorganisms4010014.

Buffet-Bataillon, S., Tattevin, P., Maillard, J.Y., Bonnaure-Mallet, M. & Jolivet-Gougeon, A. (2016). Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol., 11(1): 81–92. https://doi.org/10.2217/fmb.15.131.

Knapp, C.W., Callan, A.C., Aitken, B., Shearn, R., Koenders, A. & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environ. Sci. Pollut. Res., 24(3): 2484–2494. https://doi.org/10.1007/s11356-016-7997-y.

Oyetibo, G.O., Ilori, M.O., Adebusoye, S.A., Obayori, O.S. & Amund, O.O. (2010). Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ. Monit. Assess., 168: 305–314. https://doi.org/10.1007/s10661-009-1114-3.

Yamina, B., Tahar, B. & Marie Laure, F. (2012). Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Sci. Technol., 66(10): 2041–2048. https://doi.org/10.2166/wst.2012.355.

Sobecky, P.A. (1999). Plasmid ecology of marine sediment microbial communities. Hydrobiologia, 401: 9–18. https://doi.org/10.1023/A:1003726024628.

Endo, G., Narita, M., Huang, C.C. & Silver, S. (2002). Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. J. Environ. Biotechnol., 2(2): 71-82.




How to Cite

Ghaima, K. K., Lateef, N. S., & Khaz’al, Z. T. (2018). Heavy metal and antibiotic resistance of Acinetobacter spp. isolated from diesel fuel polluted soil. Journal of Advanced Laboratory Research in Biology, 9(2), 58–64. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/33