Potential of Marine Algae in Biosynthesis of Nanoparticles and their Applications


  • Rabaa Algotiml Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia https://orcid.org/0000-0003-3088-4276
  • Ali Gab-Alla Department of Marine Science, Faculty of Science, Suez Canal University, Ismailia, Egypt
  • Roshdi Seoudi Spectroscopy Department, Physics Division, National Research Center, Dokki, Cairo 12622, Egypt https://orcid.org/0000-0001-8846-7876
  • Hussein H. Abulreesh Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia https://orcid.org/0000-0002-3289-696X
  • Khaled Elbanna Department of Agricultural Microbiology, Faculty of Agriculture, Fayoum University, Fayoum 63512, Egypt https://orcid.org/0000-0002-2011-9119


Marine algae, Antimicrobial Activities, Anticancer, Bionanoparticles


Marine algae have been played an important role in human life since 3000 BC, with their nutritional and therapeutic values. In recent years, the role of marine algae in various industrial, agricultural and therapeutic applications have been further enhanced with their ability to biosynthesize nanoparticles. In this work, we tried to shed some light on different traditional and biotechnological applications of marine algae in modern life, particularly their utilization in the wider applications of nanotechnology.


Download data is not yet available.


Qin, Y. (2018). Seaweed Bioresources. In: Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets. Academic Press, Elsevier Inc., pp. 3-24. https://doi.org/10.1016/B978-0-12-813312-5.00001-7.

Doty, M.S. (1979). Status of marine agronomy, with special reference to the tropics. In: Jensen, A. & Stein, J.R. (Eds.), Proceedings of the 9th International Seaweed Symposium, Santa Barbara, USA, Science Press, Princeton, pp. 35-58.

Porterfield, W.M. (1922). References to the Algae in the Chinese Classics. Bulletin of the Torrey Botanical Club, 49(10): 297–300. https://doi.org/10.2307/2480100.

Wood, C.G. (1974). Seaweed extracts: a unique ocean resource. J. Chem. Educ., 51(7): 449–452. https://doi.org/10.1021/ed051p449.

Dawson, E.Y. (1966). Marine botany: An introduction. Holt, Rinehart and Winston Inc., New York, pp. 371.

Chapman, V.J. (1980). Seaweeds and their uses. 3rd edition, Chapman & Hall, London. pp. 334. https://doi.org/10.1007/978-94-009-5806-7.

Levine, I. (2016). Algae: A Way of Life and Health. In: Fleurence, J. & Levine, I. (Eds.), Seaweed in Health and Disease Prevention. Academic Press, Elsevier Inc., pp. 1-5. https://doi.org/10.1016/B978-0-12-802772-1.00001-4.

MacArtain, P., Gill, C.I., Brooks, M., Campbell, R. & Rowland, I.R. (2007). Nutritional value of edible seaweeds. Nutr. Rev., 65: 535–543. https://doi.org/10.1301/nr.2007.dec.535-543.

Kolanjinathan, K., Ganesh, P. & Saranraj, P. (2014). Pharmacological Importance of Seaweeds: A Review. World J. Fish Marine Sci., 6(1): 1–15.

Kremer, B.P. (1980). Marine Algae in Pharmaceutical Science. Phycologia, 19(2): 168–169. https://doi.org/10.2216/i0031-8884-19-2-168.1.

Pati, M.P., Sharma, S.D., Nayak, L. & Panda, C.R. (2016). Uses of seaweed and its application to human welfare: A review. Int. J. Pharm. Pharm. Sci., 8(10): 12–20. https://doi.org/10.22159/ijpps.2016v8i10.12740.

Pooja, S. (2014). Algae used as Medicine and Food - A Short Review. J. Pharm. Sci. Res., 6(1): 33-35.

Richardson, J.S. (1993). Free radicals in the genesis of Alzheimer's disease. Ann. N. Y. Acad. Sci., 695: 73–76. https://doi.org/10.1111/j.1749-6632.1993.tb23031.x.

Jiménez-Escrig, A. & Sánchez-Muniz, F.J. (2000). Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res., 20(4): 585–598. https://doi.org/10.1016/S0271-5317(00)00149-4.

Mac Monagail, M., Cornish, L., Morrison, L., Araújo, R. & Critchley, A.T. (2017). Sustainable harvesting of wild seaweed resources. Eur. J. Phycol., 52(4): 371–390. https://doi.org/10.1080/09670262.2017.1365273.

Tseng, C.K. (1981). Marine phycoculture in China. In: Levring, T. (Ed.), Xth International Seaweed Symposium. Proceedings, Göteborg, Sweden, August 11-15, 1980, Walter De Gruyter: Berlin, pp. 123-152. https://doi.org/10.1515/9783110865271-010.

Vijayabaskar, P. & Shiyamala, V. (2011). Antibacterial Activities of Brown Marine Algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv. Biol. Res., 5(2): 99–102.

Karthikaidevi, G., Manivannan, K., Thirumaran, G., Anantharaman, P. & Balasubaramanian, T. (2009). Antibacterial Properties of Selected Green Seaweeds from Vedalai Coastal Waters; Gulf of Mannar Marine Biosphere Reserve. Global J. Pharmacol., 3(2): 107-112.

Jiang, J. & Shi, S. (2018). Seaweeds and Cancer Prevention. In: Qin, Y. (Ed.), Bioactive Seaweeds for Food Applications: Natural Ingredients for Healthy Diets. Academic Press, Elsevier Inc., pp. 269-290. https://doi.org/10.1016/B978-0-12-813312-5.00014-5.

Abirami, R.G. & Kowsalya, S. (2013). Antidiabetic activity of Ulva fasciata and its impact on carbohydrate metabolism enzymes in alloxan induced diabetic rats. Int. J. Res. Phytochem. Pharmacol., 3(3): 136–141.

Damonte, E., Neyts, J., Pujol, C.A., Snoeck, R., Andrei, G., Ikeda, S., Witvrouw, M., Reymen, D., Haines, H. & Matulewicz, M.C., Cerezo, A., Coto, C.E. & De Clerco, E. (1994). Antiviral activity of a sulphated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem. Pharmacol., 47(12): 2187–2192. https://doi.org/10.1016/0006-2952(94)90254-2.

Kolender, A.A., Matulewicz, M.C. & Cerezo, A.S. (1995). Structural analysis of antiviral sulfated α-d-(1 → 3)-linked mannans. Carbohydr. Res., 273(2): 179–185. https://doi.org/10.1016/0008-6215(95)00078-8.

Philpott, J. & Bradford, M. (2006). Seaweed: Nature’s Secret for a Long and Healthy Life? The Nutrition Practitioner, pp. 1-21.

Hallsson, S.V. (1964). The uses of seaweeds in Iceland. In: De Virville, D. & Feldmann, J. (eds), Proceedings of the Fourth International Seaweed Symposium 1961, France. Pergamon Press, Oxford, pp. 398–405.

Mitchell, M.E. & Guiry, M.D. (1983). Carrageen: a local habitation or a name? J. Ethnopharmacol., 9(2-3): 347–351. https://doi.org/10.1016/0378-8741(83)90043-0.

Kahlon, S.S. & Malhotra, S. (1986). Production of gibberellic acid by fungal mycelium immobilized in sodium alginate. Enzyme Microb. Technol., 8(10): 613–616. https://doi.org/10.1016/0141-0229(86)90121-3.

Dhargalkar, V.K. & Pereira, N. (2005). Seaweed: Promising plant of the millennium. Sci. Cult., 71: 60–66.

Neish, I.C. (2013). Social and economic dimensions of carrageenan seaweed farming in Indonesia. In: Valderrama, D., Cai, J., Hishamunda, N. & Reidler, N. (Eds.), Social and Economic Dimensions of Carrageenan Seaweed Farming. Fisheries and Aquaculture Technical Paper No. 580. FAO, Rome, Italy, pp. 61–89.

Sasikumar, C. & Rengasamy, R. (1994). Role of red alga Hypnea valentiae (Gigartinales, Rhodophyta) in domestic effluent treatment at different light intensity and quality. Indian J. Mar. Sci., 23(3): 162-164.

de Morais, M.G., da Silva Vaz, B., de Morais, E.G. & Costa, J.A.V. (2015). Biologically Active Metabolites Synthesized by Microalgae. Biomed Res. Int., 2015: 835761. https://doi.org/10.1155/2015/835761.

Michalak, I. & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Eng. Life Sci., 15(2): 160-176. https://doi.org/10.1002/elsc.201400191.

Alassali, A., Cybulska, I., Brudecki, G.P., Farzanah, R. & Thomsen, M.H. (2016). Methods for Upstream Extraction and Chemical Characterization of Secondary Metabolites from Algae Biomass. Adv. Tech. Biol. Med., 4(1): 163. https://doi.org/10.4172/2379-1764.1000163.

Khanna, P., Kaur, A. & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Methods, 163: 105656. https://doi.org/10.1016/j.mimet.2019.105656.

Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I. & Prasad, R. (2015). Facile Algae-Derived Route to Biogenic Silver Nanoparticles: Synthesis, Antibacterial, and Photocatalytic Properties. Langmuir, 31(42): 11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081.

Mahdavi, M., Namvar, F., Ahmad, M.B. & Mohamad, R. (2013). Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules, 18(5): 5954–5964. https://doi.org/10.3390/molecules18055954.

Vijayan, S.R., Santhiyagu, P., Ramasamy, R., Arivalagan, P., Kumar, G., Ethiraj, K. & Ramaswamy, B.R. (2016). Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol., 95: 45–57. https://doi.org/10.1016/j.enzmictec.2016.06.009.

Alnaimat, A. & Aljamaeen, I. (2020). Biosynthesis of Silver Nanoparticles: Minireview. J. Basic Appl. Res. Biomed., 6(2): 114–119. https://doi.org/10.51152/jbarbiomed.v6i2.125.

Kamel, S. (2007). Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym. Lett., 1(9): 546–575. https://doi.org/10.3144/expresspolymlett.2007.78.

Daniel, M.C. & Astruc, D. (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 104(1): 293–346. https://doi.org/10.1021/cr030698+.

Horikoshi, S. & Serpone, N. (2013). Introduction to Nanoparticles. In: Horikoshi, S. & Serpone, N. (Eds.), Microwaves in Nanoparticle Synthesis: Fundamentals and Applications, Wiley‐VCH Verlag GmbH & Co. KGaA, pp. 1-24. https://doi.org/10.1002/9783527648122.ch1.

Kunckel, L.J. (1679). Ars vitraria experimentalis, oder vollkommene Glasmacher-Kunst. Amsterdam.

Fulhame, E. (1794). Essay on combustion, with a view to a new art of dying & painting: Wherein the phlogistic & antiphlogistic hypotheses are proved erroneous. London.

Faraday, M. (1857). The Bakerian Lecture: Experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc., 147: 145–181. http://doi.org/10.1098/rstl.1857.0011.

Jin, R., Cao, Y., Mirkin, C.A., Kelly, K.L., Schatz, G.C. & Zheng, J.G. (2001). Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 294: 1901-1903. https://doi.org/10.1126/science.1066541.

Calderón-Jiménez, B., Johnson, M.E., Montoro Bustos, A.R., Murphy, K.E., Winchester, M.R. & Vega Baudrit, J.R. (2017). Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front. Chem., 5: 6. https://doi.org/10.3389/fchem.2017.00006.

Wegner, T.H. & Jones, P.E. (2006). Advancing cellulose-based nanotechnology. Cellulose, 13(2): 115–118. https://doi.org/10.1007/s10570-006-9056-1.

Silva, G.A. (2004). Introduction to nanotechnology and its applications to medicine. Surg. Neurol., 61(3): 216–220. https://doi.org/10.1016/j.surneu.2003.09.036.

Schmidt, D., Shah, D. & Giannelis, E.P. (2002). New advances in polymer/layered silicate nanocomposites. Curr. Opin. Solid State Mater. Sci., 6(3): 205–212. https://doi.org/10.1016/S1359-0286(02)00049-9.

Wegner, T.H., Winandy, J.E., Ritter, M.A. (2005). Nanotechnology opportunities in residential and non-residential construction. 2nd International Symposium on Nanotechnology in Construction, 13-16 November 2005, Bilbao, Spain [CD-ROM]. Bagneux, France, RILEM, pp. 9.

Castro, L., Blázquez, M.L., Muñoz, J.A., González, F. & Ballester, A. (2013). Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol., 7(3): 109–116. https://doi.org/10.1049/iet-nbt.2012.0041.

Sharma, G., Pandey, S., Ghatak, S., Watal, G. & Rai, P.K. (2018). Potential of Spectroscopic Techniques in the Characterization of “Green Nanomaterials”. In: Tripathi, D.K., Ahmad, P., Sharma, S., Chauhan, D.K. & Dubey, N.K. (Eds.), Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies, Vol 1, Academic Press, Elsevier Inc., pp. 59-77. https://doi.org/10.1016/B978-0-12-811487-2.00003-7.

N. K. Tripathi, D.K.; Ahmad, P.; Sharma, S.; Chauhan, D.K.; Dubey, “Nanomaterials in Plants, Algae, and Microorganisms: Concepts and Controversies,” Acad. Press Cambridge, MA, USA, Vol. 1., vol. 1, 2017.

Kumar, P., Govindaraju, M., Senthamilselvi, S. & Premkumar, K. (2013). Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf. B Biointerfaces, 103: 658–661. https://doi.org/10.1016/j.colsurfb.2012.11.022.

Rajesh, S., Raja, D.P., Rathi, J.M., Sahayaraj, K. (2012). Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethylacetate extract and its activity against Xanthomonas campestris pv. malvacearum. J. Biopest., 5: 119-128.

Suriya, J., Bharathi Raja, S., Sekar, V. & Rajasekaran., R. (2012). Biosynthesis of silver nanoparticles and its antibacterial activity using seaweed Urospora sp. Afr. J. Biotechnol., 11(58): 12192–12198. https://doi.org/10.5897/AJB12.452.

Kannan, R.R.R., Stirk, W.A. & Van Staden, J. (2013). Synthesis of silver nanoparticles using the seaweed Codium capitatum P.C. Silva (Chlorophyceae). S. Afr. J. Bot., 86: 1–4. https://doi.org/10.1016/j.sajb.2013.01.003.

Yousefzadi, M., Rahimi, Z. & Ghafori, V. (2014). The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen) J. Agardh. Mater. Lett., 137: 1–4. https://doi.org/10.1016/j.matlet.2014.08.110.

Kumar, P., Senthamil Selvi, S. & Govindaraju, M. (2013). Seaweed-mediated biosynthesis of silver nanoparticles using Gracilaria corticata for its antifungal activity against Candida spp. Appl. Nanosci., 3(6): 495–500. https://doi.org/10.1007/s13204-012-0151-3.

Vivek, M., Kumar, P.S., Steffi, S. & Sudha, S. (2011). Biogenic Silver Nanoparticles by Gelidiella acerosa Extract and their Antifungal Effects. Avicenna J. Med. Biotechnol., 3(3): 143–148.

Ganapathy Selvam, G. & Sivakumar, K. (2015). Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Appl. Nanosci., 5(5): 617–622. https://doi.org/10.1007/s13204-014-0356-8.

Roni, M., Murugan, K., Panneerselvam, C., Subramaniam, J., Nicoletti, M., Madhiyazhagan, P., Dinesh, D. et al. (2015). Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol. Environ. Saf., 121: 31–38. https://doi.org/10.1016/j.ecoenv.2015.07.005.

Abdel-Raouf, N., Al-Enazi, N.M. & Ibraheem, I.B.M. (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arabian J. Chem., 10: S3029–S3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

El Kassas, H.Y. & Attia, A.A. (2014). Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac. J. Cancer Prev., 15(3): 1299–1306. https://doi.org/10.7314/apjcp.2014.15.3.1299.

El-Kassas, H.Y. & El-Sheekh, M.M. (2014). Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac. J. Cancer Prev., 15(10): 4311–4317. https://doi.org/10.7314/apjcp.2014.15.10.4311.

Khanehzaei, H., Ahmad, M.B., Shameli, K. & Ajdari, Z. (2014). Synthesis and characterization of Cu@Cu2O core shell nanoparticles prepared in seaweed Kappaphycus alvarezii Media. Int. J. Electrochem. Sci., 9: 8189-8198.

Gao, Y., Yang, F., Yu, Q., Fan, R., Yang, M., Rao, S., Lan, Q., Yang, Z. & Yang, Z. (2019). Three-dimensional porous Cu@Cu2O aerogels for direct voltammetric sensing of glucose. Microchim. Acta, 186(3): 192. https://doi.org/10.1007/s00604-019-3263-6.

Singaravelu, G., Arockiamary, J.S., Kumar, V.G. & Govindaraju, K. (2007). A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf. B: Biointerfaces, 57(1): 97–101. https://doi.org/10.1016/j.colsurfb.2007.01.010.

Govindaraju, K., Kiruthiga, V., Kumar, V.G. & Singaravelu, G. (2009). Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. J. Nanosci. Nanotechnol., 9(9): 5497–5501. https://doi.org/10.1166/jnn.2009.1199.

Shanmugam, N., Rajkamal, P., Cholan, S., Kannadasan, N., Sathishkumar, K., Viruthagiri, G. & Sundaramanickam, A. (2014). Biosynthesis of silver nanoparticles from the marine seaweed Sargassum wightii and their antibacterial activity against some human pathogens. Appl. Nanosci., 4(7): 881–888. https://doi.org/10.1007/s13204-013-0271-4.

Devi, J.S., Bhimba, B.V. & Peter, D.M. (2013). Production of Biogenic Silver Nanoparticles using Sargassum longifolium and its applications. Indian J. Mar. Sci., 42(1): 125–130.

Jegadeeswaran, P., Shivaraj, R. & Venckatesh, R. (2012). Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Digest J. Nanomater. Biostruct., 7(3): 991-998.

Kumar, P., Selvi, S.S., Prabha, A.L., Selvaraj, M., Rani, L.M., Suganthi, P., Devi, B.S. & Govindaraju, M. (2012). Antibacterial activity and in-vitro cytotoxicity assay against brine shrimp using silver nanoparticles synthesized from Sargassum ilicifolium. Digest J. Nanomater. Biostruct., 7(4): 1447–1455.

Kumar, P., Selvi, S.S., Prabha, A.L., Kumar, K.P., Ganeshkumar, R.S. & Govindaraju, M. (2012). Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed. Eng., 4(1): 12-16. http://dx.doi.org/10.5101/nbe.v4i1.p12-16.

Stalin Dhas, T., Ganesh Kumar, V., Stanley Abraham, L., Karthick, V. & Govindaraju, K. (2012). Sargassum myriocystum mediated biosynthesis of gold nanoparticles. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 99: 97–101. https://doi.org/10.1016/j.saa.2012.09.024.

Thangaraju, N., Venkatalakshmi, R.P., Chinnasamy, A. & Kannaiyan, P. (2012). Synthesis of silver nanoparticles and the antibacterial and anticancer activities of the crude extract of Sargassum polycystum c. Agardh. Nano Biomed. Eng., 4(2): 89-94. http://dx.doi.org/10.5101/nbe.v3i1.p89-94.

Nagarajan, S. & Arumugam Kuppusamy, K. (2013). Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. J. Nanobiotechnology, 11: 39. https://doi.org/10.1186/1477-3155-11-39.

Rajeshkumar, S., Malarkodi, C., Gnanajobitha, G., Paulkumar, K., Vanaja, M., Kannan, C. & Annadurai, G. (2013). Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J. Nanostruct. Chem., 3(1): 1–7. https://doi.org/10.1186/2193-8865-3-44.

Vijayan, S.R., Santhiyagu, P., Singamuthu, M., Ahila, N.K., Jayaraman, R. & Ethiraj, K. (2014). Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides, and their Antimicrofouling Activity. Sci. World J., 2014: 938272. https://doi.org/10.1155/2014/938272.

Arockiya Aarthi Rajathi, F., Parthiban, C., Ganesh Kumar, V. & Anantharaman, P. (2012). Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim. Acta A, Mol. Biomol. Spectrosc., 99: 166–173. https://doi.org/10.1016/j.saa.2012.08.081.

Prasad, T.N.V., Kambala, V.S.R. & Naidu, R. (2013). Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Phycol., 25(1): 177–182. https://doi.org/10.1007/s10811-012-9851-z.

Shiny, P.J., Mukherjee, A. & Chandrasekaran, N. (2014). Haemocompatibility assessment of synthesised platinum nanoparticles and its implication in biology. Bioprocess Biosyst. Eng., 37(6): 991–997. https://doi.org/10.1007/s00449-013-1069-1.

Shiny, P.J., Dhas, S.P., Mukherjee, A. & Chandrasekaran, N. (2013). Padina tetrastomatica: A Potential Source for the Synthesis of Silver Nanoparticles and Its Antibacterial Efficiency. Adv. Sci. Eng. Med., 5(9): 926–931. https://doi.org/10.1166/asem.2013.1301.

Singh, M., Kalaivani, R., Manikandan, S., Sangeetha, N. & Kumaraguru, A.K. (2013). Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl. Nanosci., 3(2): 145–151. https://doi.org/10.1007/s13204-012-0115-7.

Verma, H.N., Singh, P. & Chavan, R.M. (2014). Gold nanoparticle: Synthesis and characterization. Vet. World, 7(2): 72–77. http://dx.doi.org/10.14202/vetworld.2014.72-77.

Namvar, F., Rahman, H., Mohamad, R., Baharara, J., Mahdavi, M., Amini, E., Chartrand, M. & Yeap, S. (2014). Cytotoxic effect of magnetic iron oxide nanoparticles synthesized via seaweed aqueous extract. Int. J. Nanomedicine, 9(1): 2479-2488. https://doi.org/10.2147/IJN.S59661.

Azizi, S., Ahmad, M.B., Namvar, F. & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater. Lett., 116: 275–277. https://doi.org/10.1016/j.matlet.2013.11.038.

Madhiyazhagan, P., Murugan, K., Kumar, A.N., Nataraj, T., Dinesh, D., Panneerselvam, C., Subramaniam, J., Mahesh Kumar, P., et al. (2015). Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol. Res., 114(11): 4305–4317. https://doi.org/10.1007/s00436-015-4671-0.

Namvar, F., Rahman, H.S., Mohamad, R., Rasedee, A., Yeap, S.K., Chartrand, M.S., Azizi, S. & Tahir, P.M. (2015). Apoptosis Induction in Human Leukemia Cell Lines by Gold Nanoparticles Synthesized Using the Green Biosynthetic Approach. J. Nanomater., 2015: 642621. https://doi.org/10.1155/2015/642621.

Mohandass, C., Vijayaraj, A.S., Rajasabapathy, R., Satheeshbabu, S., Rao, S.V., Shiva, C. & De-Mello, I. (2013). Biosynthesis of Silver Nanoparticles from Marine Seaweed Sargassum cinereum and their Antibacterial Activity. Indian J. Pharm. Sci., 75(5): 606–610.

Dhas, T.S., Kumar, V.G., Karthick, V., Govindaraju, K. & Shankara Narayana, T. (2014). Biosynthesis of gold nanoparticles using Sargassum swartzii and its cytotoxicity effect on HeLa cells. Spectrochim. Acta A, Mol. Biomol. Spectrosc., 133: 102–106. https://doi.org/10.1016/j.saa.2014.05.042.

Khan, I., Saeed, K. & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian J. Chem., 12(7): 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.

Venkatesan, J., Manivasagan, P., Kim, S.K., Kirthi, A.V., Marimuthu, S. & Rahuman, A.A. (2014). Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst. Eng., 37(8): 1591–1597. https://doi.org/10.1007/s00449-014-1131-7.

Reddy, V., Torati, R.S., Oh, S. & Kim, C. (2013). Biosynthesis of Gold Nanoparticles Assisted by Sapindus mukorossi Gaertn. fruit Pericarp and their Catalytic Application for the Reduction of p-Nitroaniline. Ind. Eng. Chem. Res., 52(2): 556–564. https://doi.org/10.1021/ie302037c.

Singh, G., Babele, P.K., Kumar, A., Srivastava, A., Sinha, R.P. & Tyagi, M.B. (2014). Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L31 and its conjugation with UV-B absorbing compound shinorine. J. Photochem. Photobiol. B Biol., 138: 55–62. https://doi.org/10.1016/j.jphotobiol.2014.04.030.

Uma Suganya, K.S., Govindaraju, K., Ganesh Kumar, V., Stalin Dhas, T., Karthick, V., Singaravelu, G. & Elanchezhiyan, M. (2015). Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater. Sci. Eng., C, 47: 351–356. https://doi.org/10.1016/j.msec.2014.11.043.

Ibraheem, I.B.M., Abd Elaziz, B.E.E., Saad, W.F. & Fathy, W.A. (2016). Green Biosynthesis of Silver Nanoparticles Using Marine Red Algae Acanthophora specifera and its Antimicrobial Activity. J. Nanomed. Nanotechnol., 7: 409. https://doi.org/10.4172/2157-7439.1000409.

Sudha, S.S., Rajamanickam, K. & Rengaramanujam, J. (2013). Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J. Exp. Biol., 51(5): 393–399.

Srivastava, S.K., Yamada, R., Ogino, C. & Kondo, A. (2013). Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res. Lett., 8(1): 70. https://doi.org/10.1186/1556-276X-8-70.

LewisOscar, F., Vismaya, S., Arunkumar, M., Thajuddin, N., Dhanasekaran, D. & Nithya, C. (2016). Algal Nanoparticles: Synthesis and Biotechnological Potentials. In: Thajuddin, N. & Dhanasekaran, D. (Eds.), Algae - Organisms for Imminent Biotechnology, IntechOpen, pp. 157-182. http://dx.doi.org/10.5772/62909.

Rajeshkumar, S., Malarkodi, C., Paulkumar, K., Vanaja, M., Gnanajobitha, G. & Annadurai, G. (2014). Algae Mediated Green Fabrication of Silver Nanoparticles and Examination of Its Antifungal Activity against Clinical Pathogens. Int. J. Met., 2014: 692643. https://doi.org/10.1155/2014/692643.

Lee, K.J., Park, S.H., Govarthanan, M., Hwang, P.H., Seo, Y.S., Cho, M., Lee, W.H., Lee, J.Y., Kamala-Kannan, S. & Oh, B.T. (2013). Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater. Lett., 105: 128–131. https://doi.org/10.1016/j.matlet.2013.04.076.

Mallmann, E.J., Cunha, F.A., Castro, B.N., Maciel, A.M., Menezes, E.A. & Fechine, P.B. (2015). Antifungal activity of silver nanoparticles obtained by green synthesis. Rev. Inst. Med. Trop. Sao Paulo, 57(2): 165–167. https://doi.org/10.1590/S0036-46652015000200011.

Kim, S.W., Jung, J.H., Lamsal, K., Kim, Y.S., Min, J.S. & Lee, Y.S. (2012). Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi. Mycobiology, 40(1): 53–58. https://doi.org/10.5941/MYCO.2012.40.1.053.

Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K. & Che, C.M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antivir. Ther., 13(2): 253–262.

Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, S. & Galdiero, M. (2013). Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int. J. Nanomedicine, 8: 4303–4314. https://doi.org/10.2147/IJN.S50070.

Etemadzade, M., Ghamarypour, A., Zabihollahi, R., Shabbak, G., Shirazi, M., Sahebjamee, H., et al. (2016). Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pac. J. Trop. Dis., 6(11): 854–858. https://doi.org/10.1016/S2222-1808(16)61145-3.

Mori, Y., Ono, T., Miyahira, Y., Nguyen, V.Q., Matsui, T. & Ishihara, M. (2013). Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 8(1): 93. https://doi.org/10.1186/1556-276X-8-93.

Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H. & Yacaman, M.J. (2005). Interaction of silver nanoparticles with HIV-1. J. Nanobiotechnology, 3: 6. https://doi.org/10.1186/1477-3155-3-6.

Pangestika, R. & Ernawati, R. (2017). Antiviral Activity Effect of Silver Nanoparticles (Agnps) Solution Against the Growth of Infectious Bursal Disease Virus on Embryonated Chicken Eggs with Elisa Test. KnE Life Sciences, 3(6): 536–548. https://doi.org/10.18502/kls.v3i6.1181.

Qing, Y., Cheng, L., Li, R., Liu, G., Zhang, Y., Tang, X., Wang, J., Liu, H., & Qin, Y. (2018). Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomedicine, 13: 3311–3327. https://doi.org/10.2147/IJN.S165125.

Wang, L., Xu, H., Gu, L., Han, T.T., Wang, S. & Meng, F.B. (2016). Bioinspired synthesis, characterization and antibacterial activity of plant-mediated silver nanoparticles using purple sweet potato root extract. Mater. Technol., 31(8): 437–442. https://doi.org/10.1080/10667857.2015.1105575.

Radhakrishnan, V.S., Reddy Mudiam, M.K., Kumar, M., Dwivedi, S.P., Singh, S.P. & Prasad, T. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int. J. Nanomedicine, 13: 2647–2663. https://doi.org/10.2147/IJN.S150648.

Shah, M., Fawcett, D., Sharma, S., Tripathy, S.K. & Poinern, G. (2015). Green Synthesis of Metallic Nanoparticles via Biological Entities. Materials, 8(11): 7278–7308. https://doi.org/10.3390/ma8115377.

Beyth, N., Houri-Haddad, Y., Baraness-Hadar, L., Yudovin-Farber, I., Domb, A.J. & Weiss, E.I. (2008). Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 29(31): 4157–4163. https://doi.org/10.1016/j.biomaterials.2008.07.00.

Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B. & Roullet, J.B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother., 61(4): 869–876. https://doi.org/10.1093/jac/dkn034.

Lellouche, J., Kahana, E., Elias, S., Gedanken, A. & Banin, E. (2009). Antibiofilm activity of nanosized magnesium fluoride. Biomaterials, 30(30): 5969–5978. https://doi.org/10.1016/j.biomaterials.2009.07.03.

Krishnan, M., Sivanandham, V., Hans-Uwe, D., Murugaiah, S.G., Seeni, P., Gopalan, S. & Rathinam, A.J. (2015). Antifouling assessments on biogenic nanoparticles: A field study from polluted offshore platform. Mar. Pollut. Bull., 101(2): 816–825. https://doi.org/10.1016/j.marpolbul.2015.08.033.

Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol., 54(2): 407–419. https://doi.org/10.3892/ijo.2018.4661.

Choudhury, H., Pandey, M., Yin, T.H., Kaur, T., Jia, G.W., Tan, S., Weijie, H., Yang, E., Keat, C. G., Bhattamishra, S.K., Kesharwani, P., Md, S., Molugulu, N., Pichika, M.R. & Gorain, B. (2019). Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. Mater. Sci. Eng. C Mater. Biol. Appl., 101: 596–613. https://doi.org/10.1016/j.msec.2019.04.005.

Shi, J., Kantoff, P.W., Wooster, R. & Farokhzad, O.C. (2017). Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer, 17: 20–37. https://doi.org/10.1038/nrc.2016.108.

da Silva, P.B., Machado, R., Pironi, A.M., Alves, R.C., de Araújo, P.R., Dragalzew, A.C., Dalberto, I. & Chorilli, M. (2019). Recent Advances in the Use of Metallic Nanoparticles with Antitumoral Action - Review. Curr. Med. Chem., 26(12): 2108–2146. https://doi.org/10.2174/0929867325666180214102918.

Kalimuthu, K., Suresh Babu, R., Venkataraman, D., Bilal, M. & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf., B, 65(1): 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018.

Al-Sheddi, E.S., Farshori, N.N., Al-Oqail, M.M., Al-Massarani, S.M., Saquib, Q., Wahab, R., Musarrat, J., Al-Khedhairy, A.A. & Siddiqui, M.A. (2018). Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA). Bioinorg. Chem. Appl., 2018: 9390784. https://doi.org/10.1155/2018/9390784.

Gurunathan, S., Qasim, M., Park, C., Yoo, H., Kim, J.H. & Hong, K. (2018). Cytotoxic Potential and Molecular Pathway Analysis of Silver Nanoparticles in Human Colon Cancer Cells HCT116. Int. J. Mol. Sci., 19(8): 2269. https://doi.org/10.3390/ijms19082269.

Yuan, Y.G., Peng, Q.L. & Gurunathan, S. (2017). Silver nanoparticles enhance the apoptotic potential of gemcitabine in human ovarian cancer cells: combination therapy for effective cancer treatment. Int. J. Nanomedicine, 12: 6487–6502. https://doi.org/10.2147/IJN.S135482.

Zielinska, E., Zauszkiewicz-Pawlak, A., Wojcik, M. & Inkielewicz-Stepniak, I. (2018). Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget, 9(4): 4675–4697. https://doi.org/10.18632/oncotarget.22563.

Fard, N.N., Noorbazargan, H., Mirzaie, A., Hedayati Ch,M., Moghimiyan, Z. & Rahimi, A. (2018). Biogenic synthesis of AgNPs using Artemisia oliveriana extract and their biological activities for an effective treatment of lung cancer. Artif. Cells Nanomed. Biotechnol., 46: S1047–S1058. https://doi.org/10.1080/21691401.2018.1528983.

Kovács, D., Igaz, N., Keskeny, C., Bélteky, P., Tóth, T., Gáspár, R., Madarász, D., Rázga, Z., Kónya, Z., Boros, I.M. & Kiricsi, M. (2016). Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Sci. Rep., 6: 27902. https://doi.org/10.1038/srep27902.

Tavakoli, F., Jahanban-Esfahlan, R., Seidi, K., Jabbari, M., Behzadi, R., Pilehvar-Soltanahmadi, Y. & Zarghami, N. (2018). Effects of nano-encapsulated curcumin-chrysin on telomerase, MMPs and TIMPs gene expression in mouse B16F10 melanoma tumour model. Artif. Cells Nanomed. Biotechnol., 46: 75–86. https://doi.org/10.1080/21691401.2018.1452021.

Yeasmin, S., Datta, H.K., Chaudhuri, S., Malik, D. & Bandyopadhyay, A. (2017). In-vitro anti-cancer activity of shape controlled silver nanoparticles (AgNPs) in various organ specific cell lines. J. Mol. Liq., 242: 757–766. https://doi.org/10.1016/j.molliq.2017.06.047.

Wang, Z.X., Chen, C.Y., Wang, Y., Li, F.X.Z., Huang, J., Luo, Z.W., et al. (2019). Ångstrom-Scale Silver Particles as a Promising Agent for Low-Toxicity Broad-Spectrum Potent Anticancer Therapy. Adv. Funct. Mater., 29(23): 1808556. https://doi.org/10.1002/adfm.201808556.

Saravanan, M., Vahidi, H., Cruz, D.M., Vernet-Crua, A., Mostafavi, E., Stelmach, R., Webster, T.J., Mahjoub, M.A., Rashedi, M. & Barabadi, H. (2020). Emerging Antineoplastic Biogenic Gold Nanomaterials for Breast Cancer Therapeutics: A Systematic Review. Int. J. Nanomedicine, 15: 3577-3595. https://doi.org/10.2147/IJN.S240293.

Chen, B., Zhang, Y., Yang, Y., Chen, S., Xu, A., Wu, L. & Xu, S. (2018). Involvement of telomerase activity inhibition and telomere dysfunction in silver nanoparticles anticancer effects. Nanomedicine, 13(16): 2067–2082. https://doi.org/10.2217/nnm-2018-0036.

Farah, M.A., Ali, M.A., Chen, S.M., Li, Y., Al-Hemaid, F.M., Abou-Tarboush, F.M., Al-Anazi, K.M. & Lee, J. (2016). Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces, 141: 158–169. https://doi.org/10.1016/j.colsurfb.2016.01.027.

Mytych, J., Zebrowski, J., Lewinska, A. & Wnuk, M. (2017). Prolonged Effects of Silver Nanoparticles on p53/p21 Pathway-Mediated Proliferation, DNA Damage Response, and Methylation Parameters in HT22 Hippocampal Neuronal Cells. Mol. Neurobiol., 54(2): 1285–1300. https://doi.org/10.1007/s12035-016-9688-6.

Yang, T., Yao, Q., Cao, F., Liu, Q., Liu, B. & Wang, X.H. (2016). Silver nanoparticles inhibit the function of hypoxia-inducible factor-1 and target genes: insight into the cytotoxicity and antiangiogenesis. Int. J. Nanomedicine, 11: 6679–6692. https://doi.org/10.2147/IJN.S109695.

Zhang, Y., Lu, H., Yu, D. & Zhao, D. (2017). AgNPs and Ag/C225 Exert Anticancerous Effects via Cell Cycle Regulation and Cytotoxicity Enhancement. J. Nanomater., 2017: 7920368. https://doi.org/10.1155/2017/7920368.

Panzarini, E., Mariano, S., Vergallo, C., Carata, E., Fimia, G.M., Mura, F., Rossi, M., Vergaro, V., Ciccarella, G., Corazzari, M. & Dini, L. (2017). Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicol. In Vitro, 41: 64–74. https://doi.org/10.1016/j.tiv.2017.02.014.

Homayouni-Tabrizi, M., Soltani, M., Karimi, E., Namvar, F., Pouresmaeil, V. & Es-Haghi, A. (2019). Putative mechanism for anticancer properties of Ag-PP (NPs) extract. IET Nanobiotechnol., 13(6): 617–620. https://doi.org/10.1049/iet-nbt.2018.5199.

Kemp, M.M., Kumar, A., Mousa, S., Dyskin, E., Yalcin, M., Ajayan, P., Linhardt, R.J. & Mousa, S.A. (2009). Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties. Nanotechnology, 20(45): 455104. https://doi.org/10.1088/0957-4484/20/45/455104.

Modan, E.M. & Plăiașu, A.G. (2020). Advantages and Disadvantages of Chemical Methods in the Elaboration of Nanomaterials. Ann. "Dunarea Jos" Univ. Galati, Fascicle IX Metall. Mater. Sci., 43(1): 53–60. https://doi.org/10.35219/mms.2020.1.08.

Manasreh, O. (2011). Introduction to nanomaterials and devices. John Wiley & Sons, Hoboken, NJ, pp. 488.

James, C.R. (2015). Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization. Ph.D. Thesis, University of California, San Diego, pp. 231.

Alagarasi, A. (2009). Introduction to nanomaterials. In: Viswanathan, B. (ed.), Nanomaterials, Narosa Publishing House, Mumbai, pp. 2–25.

Sharma, A., Sharma, S., Sharma, K., Chetri, S.P.K., Vashishtha, A., Singh, P., Kumar, R., Rathi, B. & Agrawal, V. (2016). Algae as crucial organisms in advancing nanotechnology: a systematic review. J. Appl. Phycol., 28(3): 1759–1774. https://doi.org/10.1007/s10811-015-0715-1.

Fard, J.K., Jafari, S. & Eghbal, M.A. (2015). A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Adv. Pharm. Bull., 5(4): 447–454. https://doi.org/10.15171/apb.2015.061.

Lim, S., Park, J., Shim, M.K., Um, W., Yoon, H.Y., Ryu, J.H., Lim, D.K. & Kim, K. (2019). Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy. Theranostics, 9(25): 7906–7923. https://doi.org/10.7150/thno.38425.

Uzair, B., Liaqat, A., Iqbal, H., Menaa, B., Razzaq, A., Thiripuranathar, G., Fatima Rana, N. & Menaa, F. (2020). Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering, 7(4): 129. https://doi.org/10.3390/bioengineering7040129.

Khalid, M., Khalid, N., Ahmed, I., Hanif, R., Ismail, M. & Janjua, H.A. (2017). Comparative studies of three novel freshwater microalgae strains for synthesis of silver nanoparticles: insights of characterization, antibacterial, cytotoxicity and antiviral activities. J. Appl. Phycol., 29(4): 1851–1863. https://doi.org/10.1007/s10811-017-1071-0.

Venkatesan, J., Kim, S.K. & Shim, M.S. (2016). Antimicrobial, Antioxidant, and Anticancer Activities of Biosynthesized Silver Nanoparticles Using Marine Algae Ecklonia cava. Nanomaterials, 6(12): 235. https://doi.org/10.3390/nano6120235.

Chugh, H., Sood, D., Chandra, I., Tomar, V., Dhawan, G. & Chandra, R. (2018). Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol., 46: 1210–1220. https://doi.org/10.1080/21691401.2018.1449118.

Arvizo, R., Bhattacharya, R. & Mukherjee, P. (2010). Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv., 7(6): 753–763. https://doi.org/10.1517/17425241003777010.

González-Ballesteros, N., Prado-López, S., Rodríguez-González, J.B., Lastra, M. & Rodríguez-Argüelles, M.C. (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: Its activity in colon cancer cells. Colloids Surf. B Biointerfaces, 153: 190–198. https://doi.org/10.1016/j.colsurfb.2017.02.020.

González-Ballesteros, N., Rodríguez-Argüelles, M.C., Prado-López, S., Lastra, M., Grimaldi, M., Cavazza, A., Nasi, L., Salviati, G. & Bigi, F. (2019). Corrigendum to “Macroalgae to nanoparticles: Study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines” [Mater. Sci. Eng. C 97 (2019) 498–509]. Mater. Sci. Eng., C, 101: 709. https://doi.org/10.1016/j.msec.2019.03.065.

Coradeghini, R., Gioria, S., García, C.P., Nativo, P., Franchini, F., Gilliland, D., Ponti, J. & Rossi, F. (2013). Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol. Lett., 217(3): 205–216. https://doi.org/10.1016/j.toxlet.2012.11.022.

Kohout, C., Santi, C. & Polito, L. (2018). Anisotropic Gold Nanoparticles in Biomedical Applications. Int. J. Mol. Sci., 19(11): 3385. https://doi.org/10.3390/ijms19113385.

Roy, S. (2019). A Review: Green Synthesis of Nanoparticles from Seaweeds and Its some Applications. Austin J. Nanomed. Nanotechnol., 7(1): 1054.

Fawcett, D., Verduin, J.J., Shah, M., Sharma, S.B. & Poinern, G.E.J. (2017). A Review of Current Research into the Biogenic Synthesis of Metal and Metal Oxide Nanoparticles via Marine Algae and Seagrasses. J. Nanosci., 2017: 8013850. https://doi.org/10.1155/2017/8013850.

Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J., Chen, H. & Huo, Q. (2008). A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc., 130(9): 2780–2782. https://doi.org/10.1021/ja711298b.

Huang, X., Jain, P.K., El-Sayed, I.H. & El-Sayed, M.A. (2006). Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol., 82(2): 412–417. https://doi.org/10.1562/2005-12-14-RA-754.

Cai, W., Gao, T., Hong, H. & Sun, J. (2008). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 1: 17–32. https://doi.org/10.2147/nsa.s3788.

Jefferson, D.A. (2000). The surface activity of ultrafine particles. Phil. Trans. R. Soc. A Math. Phys. Eng. Sci., 358: 2683–2692. http://doi.org/10.1098/rsta.2000.0677.

Hirsch, L.R., Stafford, R.J., Bankson, J.A., Sershen, S.R., Rivera, B., Price, R.E., Hazle, J.D., Halas, N.J. & West, J.L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA, 100(23): 13549–13554. https://doi.org/10.1073/pnas.2232479100.

Mohammadlou, M., Maghsoudi, H. & Jafarizadeh-Malmiri, H. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. Int. Food Res. J., 23(2): 446–463.

Ponnuchamy, K. & Jacob, J.A. (2016). Metal nanoparticles from marine seaweeds – a review. Nanotechnol. Rev., 5(6): 589–600. https://doi.org/10.1515/ntrev-2016-0010.

Xu, L., Wang, Y.Y., Huang, J., Chen, C.Y., Wang, Z.X. & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20): 8996–9031. https://doi.org/10.7150/thno.45413.



How to Cite

Algotiml, R., Gab-Alla, A., Seoudi, R., H. Abulreesh, H., & Elbanna, K. (2021). Potential of Marine Algae in Biosynthesis of Nanoparticles and their Applications. Journal of Advanced Laboratory Research in Biology, 12(3), 30–49. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/356