Temperature – Dependent Toxicokinetics of Copper and Lead in Notonecta glauca L. (Hemiptera: Notonectidae) Under Laboratory Condition

  • Sweety Kumari University Department of Zoology, Ranchi University, Ranchi-834008, India.
  • Abhijit Dutta University Department of Zoology, Ranchi University, Ranchi-834008, India.
  • Sunita Dutta Department of Zoology, Women’s College, Ranchi-834001, India.
Keywords: Temperature, Uptake factor, Bioaccumulation, Toxicokinetics


Temperature is a critical factor due to its effect on both physiology of the organism and the environmental chemistry of the metals. The present study focuses on the toxicity and the bioaccumulation kinetics of Cu and Pb in Notonecta glauca exposed to heavy metal contaminated water system at different temperatures. The result showed that the accumulation of heavy metal gradually increases with increase in temperature and duration of exposure while there was a decrease in LC50 value of Pb and Cu. The calculated uptake factor of lead at different temperatures showed that it has a higher uptake potential than copper.


Download data is not yet available.


[1]. Fernandes, M.N. & Mazon, A.F. (2003). Environmental Pollution and Fish Gill Morphology (Eds. Val, A.L. and Kapoor, B.G.) Science Publishers, Inc. Enfield, USA pp. 203.
[2]. Lagadic, L. & Caquet, T. (1998). Invertebrates in testing of Environmental Chemicals: Are they Alternatives? Environ. Health Persp., 106: 593-613.
[3]. Michailova, P.V. (2011). Rearrangements in Chironomidae (Diptera) genomes induced by various environmental stress factors. Russ. J. Genet. Appl. Res., 1: 10–20.
[4]. Sudha, P.N. & Backyavathy, D.M. (2006). Comparison of toxicokinetics base bioaccumulation of copper and cadmium by earthworm Lampito mauritii (Kinberg) under controlled laboratory condition. The Bioscan, 1:27-30.
[5]. Morgan, A.J., Morgan, J.E., Turner, M. & Yarwood, A. (1993). Heavy metal relationships in earthworms (Ed. Satchell, J.E.) Earthworm ecology, Lewis, Boca Raton, FL, USA, 203-219.
[6]. Peijenburg, W.J.G.M., Posthuma, L., Eijsackers, H. & Allen, H.E. (1997). Implementation of bioavailability for policy and environmental management purposes (Eds. Herrchen, M., Debus, R. & Pramanik-Strehlow, R.) Bioavailability as a Key Property in Terrestrial Ecotoxicity Assessment and Evaluation, Fraunhofer IRB Verlag, Stuttgart, Germany, p. 35-54.
[7]. Widianarko, B. & VanStraalen, N. (1996). Toxicokinetics-based survival analysis in bioassays using nonpersistent chemicals. Environ. Toxicol. Chem., 15: 402-406.
[8]. Finey, D.J. (1971). Probit analysis (2nd ed). Cambridge University Press, London, pp. 208.
[9]. APHA (1993). Standard methods for the examination of waste and wastewater (14th Ed) American Public Health Association, New York.
[10]. Sample, B., Beauchamp, J.J., Efroymson, R., Suter II, G.W. & Ashwood, T. (1998). Development and Validation of Bioaccumulation Models for Earthworms, Lockheed Martin energy systems, Inc., Department of Energy, US), pp.1.
[11]. Landrum, P.F., Hayton, W.L., Lee III, H., McCarty, L.S., Mackay, D. & Mckim, J.M. (1992). Synopsis of discussion on the kinetics behind environmental bioavailability (Eds. Hamelink, J.L., Landrum, P.F., Bergman, H.L. & Benson, W.H.) Bioavailability: Physical, Chemical and Biological Interactions, Lewis, Boca Raton, FL, USA, p.203-219.
[12]. Hodson, P.V., Borgmann, U. & Shear, H. (1979). Toxicity of Copper to Aquatic Biota (Ed. Nriagu, J.O.) Biogeochemistry of Copper, Part II. Health Effects, John Wiley and Sons, New York, p.307-372.
[13]. Lewis, A.G. & Cave, W.R. (1982). The biological importance of copper in oceans and estuaries. Oceanogr. Mar. Biol. Ann. Rev., 20: 471-695.
[14]. Leland, H.V. & Kuwabara, J.S. (1985). Trace metals (Eds. Rand, G.M. & Petrocelli, S.R.) Fundamentals of aquatic toxicology methods and application, Hemisphere Publishing Corporation, Washington, p. 374-415.
[15]. Bryant, V., McLusky, D.S., Roddie, K. & Newbery, D.M. (1984). Effect of temperature and salinity on the toxicity of chromium to three estuarine invertebrates (Corophium volutator, Macoma balthica, Nereis diversicolor). Mar. Ecol. Prog. Ser., 20: 137-149.
[16]. Bryant, V., Newbery, D.M., McLusky, D.S. & Campbell, R. (1985). Effect of temperature and salinity on the toxicity of arsenic to three estuarine invertebrates (Corophium volutator, Macoma balthica, Tubifex costatus). Mar. Ecol. Prog. Ser., 24: 129-137.
[17]. WHO. (1989). Lead- environmental aspects, Environmental Health Criteria, International programme on chemical safety, 85.
[18]. Jones, M.B. (1975). Synergistic Effects of Salinity, Temperature and Heavy Metals on Mortality and Osmoregulation in Marine and Estuarine Isopods (Crustacea). Mar. Bio., 30:13-20.
[19]. Spehar, R.L., Anderson, R.L. & Fiandt, J.T. (1978). Toxicity and bioaccumulation of cadmium and lead in aquatic invertebrates. Environ. Pollut., 15: 195-208.
[20]. Levent Bat, Mehmet Akbulut, Mehmet Çulha, Ayşe Gündoğdu, Hasan Hüseyin Satilmiş (2000). Effect of Temperature on the Toxicity of Zinc, Copper and Lead to the Freshwater Amphipod Gammarus pulex pulex (L., 1758). Turk. J. Zool., 24: 409-416.
[21]. Nussey, G. (1998). Metal Ecotoxicology of the upper Olifants River at Selected Localities and the effect of Copper and Zinc on Fish Blood Physiology, Ph.D. -thesis, Rand Afrikaans University, South Africa.
[22]. Blust, R., Bernaerts, F., Linden, A.V. & Thoeye, C. (1987). The influence of aqueous copper chemistry on the uptake and toxicity of copper in Artemia. Artemia Research and its application. Morphology, Genetics, Strain characterization, Toxicol., 1: 311-323.
[23]. Solioz, M. & Vulpe, C. (1996). CPx-type ATPases: A class of P-type ATPases that pump heavy metals. Trend. Biochem. Sci., 21: 237-241.
[24]. Rogers, J.T., Patel, M, Gilmour, K.M. & Wood, C.M. (2005). Mechanisms behind Pb-induced disruption of Na+ and Cl– balance in rainbow trout (Oncorhynchus mykiss). Am. J. Physiol. Regul. Integr. Comp. Physiol., 289: R463-R472.
[25]. Kosalwat, P. & Knight, A.W. (1987). Acute toxicity of aqueous and substrate-bound copper to the midge, Chironomus decorus. Arch. Environ. Contam. Toxicol., 16: 275-282.
[26]. Shutes, R.B.E., Ellis, J.B., Revitt, D.M. & Bascombe, A.D. (1991). The Biological Assessment of Toxic Metal Impacts on Receiving Water Quality, UK, Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation, Proceedings of the Vienna Symposium, August 1991. IAHS Publ. no. 203, UK.
How to Cite
Kumari, S., Dutta, A., & Dutta, S. (2011). Temperature – Dependent Toxicokinetics of Copper and Lead in Notonecta glauca L. (Hemiptera: Notonectidae) Under Laboratory Condition. Journal of Advanced Laboratory Research in Biology, 2(2), 35-39. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/60
Abstract viewed = 97 times, PDF downloaded = 22 times