Effects of Nanosilver Treatments on Vase Life of Cut Flowers of Carnation (Dianthus caryophyllus cv. 'White Liberty’)

  • Hossein Zarei Horticulture Department of Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, Iran.
  • Yeganeh Basiri Horticulture Department of Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, Iran.
  • Kambiz Mashayekhi Horticulture Department of Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, Iran.
Keywords: Carnation (Dianthus caryophyllus), Cut flowers, Nanosilver (NS), Vase Life, Post-Harvest

Abstract

Carnation (Dianthus caryophyllus) is one of the most cultivated flowers around the world for producing of cut flowers. This paper assessed the efficacy of nanosilver (NS) as an antibactericidal agent in extending the vase life of cut flowers of carnation (Dianthus caryophyllus L.). Vase solutions were consisting of NS concentrations in 5, 10, 20, 40 and 80 ppm included sucrose 6 percent added in all treatments. Results showed that all NS treatments were combined with sugar extended the vase life of carnation flowers significantly compared with control. Observations indicated that NS treatments inhibited the growth of microorganisms in vase solution and considerably extend the vase life of cut flowers of carnation.

Downloads

Download data is not yet available.

References

[1]. Altman, S.A., Solomos, T. (1995). Differential respiratory and morphological responses of carnations pulsed or continuously treated with silver thiosulfate. Postharvest Biol. Technol., 5: 331-343.
[2]. Alt, V., Bechert, T., Steinrucke, P., Wagener, M., Seidel, P., Dingeldein, E., Domann, E., Schnettler, R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25: 4383-4391.
[3]. Chen, X., Schluesener, H.J. (2008). Nanosilver: a nanoproduct in medical application. Toxicol. Lett., 176: 1-12.
[4]. Da Silva, J.A.T. (2003). The cut flower: post-harvest considerations. J. Biol. Sci., 3: 406-442.
[5]. Dubas, S.T., Kumlangdudsana, P., Potiyaraj, P. (2006). Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers, Colloids Surf. A: Physicochem. Eng. Aspect 289: 105-109.
[6]. Fujino, D.W., Reid, M.S., Kohl, H.C. (1983). The water relations of maidenhair fronds treated with silver nitrate. Sci. Hort., 19: 349-355.
[7]. Furno, F., Morley, K.S., Wong, B., Sharp, Arnold, P.L., Howdle, S.M., Bayston, R., Brown, P.D., Winship, P.D., Reid, H.J. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J. Antimicrob. Chemother., 54: 1019-1024.
[8]. Galbally, J. and Galbally, E. (1997). Carnations and pinks for garden and greenhouse, Timber Press, Portland, Oregon, USA. Pp 1-310.
[9]. Halevy, A.H., Mayak, S. (1981). Senescence and postharvest physiology of cut flowers, 2. Hort. Rev., 3: 59-143.
[10]. He, S., Joyce, D.C, Irving. D.E., Faragher, J.D. (2006). Stem end blockage in cut Grevillea ‘Crimson Yullo’ inflorescences. Postharvest Biol. Technol., 41: 78-84.
[11]. Ichimura, K., Kojima, K., Goto, R. (1999). Effects of temperature, 8-hydroxyquinoline sulphate and sucrose on the vase life of cut rose flowers. Postharvest Biol. Technol., 15: 33-40.
[12]. Ichimura, K., Yoshioka, S., Yumoto-Shimizu, H. (2008). Effects of silver thiosulfate complex (STS), sucrose and combined pulse treatments on the vase life of cut snapdragon flowers. Environ. Control Biol., 46: 155-162.
[13]. Ichimura, K., Shimizu-Yomoto, H. (2007). Extension of the vase life of cut rose by treatment with sucrose before and during simulated transport. Bull. Natl. Inst. Flor. Sci., 7: 17-27.
[14]. Jain, P., Pradeep, T. (2005). Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng., 90: 59-63.
[15]. Jiang, H., Manolache, S., Wong, A.C.L., Denes, F.S. (2004). Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci., 93: 1411-1422.
[16]. Jurgens, A., Witt, T., Gottsberger, G. (2003a). Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochemical Systematics and Ecology, 31: 345-357.
[17]. Kim, J.H., Lee, A.K., Suh, J.K. (2005). Effect of certain pre-treatment substances on vase life and physiological character in Lilium spp. Acta Hort., 673: 307-314.
[18]. Liu, J.P., He, S.G., Zhang, Z.Q., Cao, J.P., Lv, P., He, S., Cheng, G., Joyce, D.C. (2009). Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biol. Technol., 54: 59-62.
[19]. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Wing, Y.Y., Sun, H., Tam, P.K.H., Chiu, J.F., Che, C.M. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem., 12: 527- 534.
[20]. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, T.J., Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16: 2346-2353.
[21]. Nichols, R. (1966). Ethylene production during senescence of flowers. J. Hortic. Sci., 41: 279-290.
[22]. Niemietz, C.M., Tyerman, S.D. (2002). New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS LETT., 531: 443-447.
[23]. Ohkawa, K., Kasahara, Y., Suh, J. (1999). Mobility and effects on the vase life of silver-containing compounds in cut rose flowers. Hort. Science, 34: 112-113.
[24]. Park, S.H., Oh, S.G., Mun, J.Y., Han, S.S. (2005). Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids Surf. B: Biointerfaces, 44: 117-122.
[25]. Peitao Lu, Jinping Coa, Shenggen He, Jiping Liu, Hongmei Li, Giping Cheng, Yuelian Ding, Daryl C. Joyce, (2010). Nano-silver pulse treatments improve water relations of cut rose cv. Movie Starflowers. Postharvest Biol. Techno., 57: 196-202.
[26]. Reid, M.S., Paul, J.L., Farhoomand, M.B., Kofranek, A.M., Staby, G.L. (1980). Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J. Am. Soc. Hortic. Sci., 105: 25-27.
[27]. Russell. A.D., Hugo, W.B. (1994). Antimicrobial activity and action of silver. Prog. Med. Chem., 31: 351-370.
[28]. Solgi, M., Kafi, M., Taghavi, T.S., Naderi, R. (2009). Essential oils and nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers. Postharvest Biol. Technol., 53: 155-158.
[29]. Van Doorn, W.G. (1997). Water relations of cut flowers. Hort. Rev., 18: 1-85.
[30]. Van leperen, W. (2007). Ion-mediated changes of xylem hydraulic resistance in planta: fact or fiction? Trends Plant Sci., 12: 137- 142.
[31]. Veen, H. (1979). Effects of silver on ethylene synthesis and action in cut carnations, Planta, 145: 467- 470.
Published
2011-04-01
How to Cite
Zarei, H., Basiri, Y., & Mashayekhi, K. (2011). Effects of Nanosilver Treatments on Vase Life of Cut Flowers of Carnation (Dianthus caryophyllus cv. ’White Liberty’). Journal of Advanced Laboratory Research in Biology, 2(2), 40-44. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/61
Section
Articles
Abstract viewed = 73 times, PDF downloaded = 39 times