Leaf Area, Fresh Weight and Dry Weight Prediction Models for Ornamental Plants Ficus benjamina (cv. Starlight)

  • F. Bidarnamani Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, I.R., Iran.
  • H. Zarei Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, I.R., Iran.
  • K. Mashayekhi Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, I.R., Iran.
  • B. Kamkar Gorgan University of Agricultural Sciences and Natural Resources, Golestan Province, Gorgan, I.R., Iran.
Keywords: Foliage pot plants, Leaf area estimation, Leaf growth estimation, Non-destructive methods, Ficus benjamina


Measurements of leaf growth indices namely leaf area, fresh weight and dry weight are of value in physiological studies and plant growth estimation. The use of prediction models to estimate leaf area, fresh weight and dry weight is simple, rapid and non-destructive. Several mathematical functions have been formulated for estimating leaf area, fresh weight and dry weight of various crops but almost there is no information for Ficus benjamina. This work was aimed to propose leaf area (LA), fresh weight (FW) and dry weight (DW) prediction models for Ficus benjamina (cv. Starlight) leafy ornamental pot plant using leaf length (L) and width (W). 1000 leaves were collected randomly from greenhouse grown plants and 700 of cuts were used for prediction models. LA was measured with a digital area meter (DELTA-T, Co. Durham, UK), related FW and DW also were weighted and leaf dimensions were determined by the ruler. For each studying growth index LA, FW and DW the predictive abilities of three regression equations (linear, polynomial and power) were compared with different independent variables for each equation. Leaf length × width provided a good estimation of leaf area and fresh weight of the leaves of Ficus benjamina. It was also concluded that leaves the dry weight of Ficus benjamina can be estimated or simulated as a power function of L×W or L+W with reasonable accuracy. Moreover, a reasonable relationship between leaf fresh weight and leaf area was found too.


Download data is not yet available.


[1]. Akram-ghaderi, F. & Soltani, A. (2007). Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate subhumid environment. International Journal of Plant Production, 1: 63-71. SAS Institute, 1992. SAS/STAT user's guide, Version 6, 4th editions, SAS Inst., Inc., Cary, NC.
[2]. Bignami, C. & Rossini, F. (1996). Image analysis, estimation of leaf area index and plant size of young hazelnut plants. J. Hort. Sci., 71: 113-121.
[3]. Causton, D.R. & Venus, J.C. (1981). The biometry of plant growth. London: Edward Arnold, 301p.
[4]. Cho, Y.Y., Oh, S., Oh, M.M. & Son, J.E. (2007). Estimation of individual leaf area, fresh weight, and dry weight of hydroponically grown cucumbers (Cucumis sativus L.) using leaf length, width and SPAD value. Sci. Hort., 111: 330-334.
[5]. Cristofori, V., Rouphael, Y., Mendoza-de Gyves, E. & Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Sci. Hort., 113: 221-225.
[6]. De Swart, E.A.M., Groenwold, R., Kanne, H.J., Stam, P., Marcelis, L.F.M. & Voorrips, R.E. (2004). Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. J. Hort. Sci. Biotechnol., 79: 764-770.
[7]. Demirsoy, H., Demirsoy, L., Uzun, S. & Ersoy, B. (2004). Non-destructive leaf area estimation in peach. Eur. J. Hort. Sci., 69: 144-146.
[8]. Evans, G.C. (1972). The quantitative analysis of plant growth. Oxford: Blackwell. 734p.
[9]. Gamiely, S., Randle, W.M., Mills, H.A. & Smittle, D.A. (1991). A rapid and non-destructive method for estimating leaf area of onions. Hort. Sci., 26(2): 206.
[10]. Guo, D.P. & Sun, Y.Z. (2001). Estimation of leaf area of stem lettuce (Lactuca sativa var angustana) from linear measurements. Indian Journal of Agricultural Science, 71(7): 483-486.
[11]. Karimi, S., Tavallali, V., Rahemi, M., Rostami, A.A. & Vaezpour, M. (2009). Estimation of leaf growth on the basis of measurements of leaf lengths and widths, choosing Pistachio seedling as model. Aust. J. Basic & Appl. Sci., 3(2): 1070-1075.
[12]. Lizaso, J.I., Batchelor, W.D. & Westgate, M.E. (2003). A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves. Field Crops Res., 80: 1-17.
[13]. Ma, L., Gardner, F.P. & Selamat, A. (1992). Estimation of leaf area from leaf and total mass measurements in peanut. Crop Science, 32: 467-471.
[14]. Mendoza-de Gyves, E., Rouphael, Y., Cristofori, V. & Rosana Mira, F. (2007). A non-destructive, simple and accurate model for estimating the individual leaf area of kiwi (Actinidia deliciosa). Fruits, 62: 171-176.
[15]. Mokhtarpour, H., B.S. Teh C, Saleh, G., Selamat, A.B., Asadi, M.E. & Kamkar, B. (2010). Non-destructive estimation of the maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communication in Biometry and Crop Science, 5(1): 19-26.
[16]. Montero, F.J., de Juan, J.A., Cuesta, A. & Brasa, A. (2000). Non-destructive methods to estimate leaf area in Vitis vinifera L. Hort. Sci., 35(4): 696–698.
[17]. NeSmith, D.S. (1992). Estimating summer squash leaf area nondestructively. Hort. Sci., 27: 77.
[18]. Norman, J.M. & Campbell, G.S. (1991). Canopy structure. In: Pearcy, R.W., Ehleringer, J.R., MOONEY, H.A., Rundel, P.W. (Ed.). Plant physiological ecology: field methods and instrumentation. London: Chapman & Hall., p.301-325.
[19]. Olfati, J.A., Peyvast, Gh., Sanavi, M., Salehi, M., Mahdipour, M. & Nosratie-Rad, Z. (2009). Comparisons of leaf area estimation from linear measurements of red cabbage. Int. J. Veg. Sci., 15: 185-192.
[20]. Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Sci. Hort., 113: 322-328.
[21]. Potdar, M.V. & Pawar, K.R. (1991). Non-destructive leaf area estimation in banana. Sci. Hort., 45, 251 254.
[22]. Rivera, C.M., Rouphael, Y., Cardarelli, M. & Colla, G. (2007). A simple and accurate equation for estimating individual leaf area of eggplant from linear measurements. Europ. J. Hort. Sci., 72: 228-230.
[23]. Robbins, N.S. & Pharr, D.M. (1987). Leaf area prediction methods for cucumber from linear measurements. Hort. Sci., 22 (6): 1264–1266.
[24]. Rouphael, Y., Mouneimne, A.H., Rivera, C.M., Cardarelli, M., Marucci, A. & Colla, G. (2010). Allometric models for non-destructive leaf area estimation in grafted and un-grafted watermelon (Citrullus lanatus Thunb.). J. Food Sci. Environ., 8: 161-165.
[25]. Rouphael, Y., Rivera, C.M., Cardarelli, M., Fanasca, S. & Colla, G. (2006). Leaf area estimation from linear measurements in zucchini plants of different ages. J. Hort. Sci. Biotechnol., 81: 238-241.
[26]. Salerno, A., Rivera, C.M., Rouphael, Y., Colla, G., Cardarelli, M., Pierandrei, F., Rea, E. & Saccardo, F. (2005). Leaf area estimation of radish from linear measurements. Adv. Hort. Sci., 19: 213-215.
[27]. Serdar, U. & Demirsoy, H. (2006). Non-destructive leaf area estimation in Chestnut. Sci. Hort., 108: 227 -230.
[28]. Sharrett, B.S. & D.G. Baker. (1985). Alfalfa leaf area as a function of dry matter. Crop Science, 26: 1040 -1042.
[29]. Stoppani, M.I., Wolf, R., Francescangeli, N. & Martí, H.R. (2003). A non-destructive and rapid method for estimating leaf area of broccoli. Adv. Hort. Sci., 17: 173-175.
[30]. Tsialtas, J.T., Koundouras, S. & Zioziou, E. (2008). Leaf area estimation by simple measurements and evaluation of leaf area prediction models in Cabernet-Sauvignon grapevine leaves. Photosynthetica, 46: 452-456.
[31]. Williams III, L. & Martinson, T.E. (2003). Non-destructive leaf area estimation of ‘Niagara’ and ‘De Chaunac’ grapevines. Sci. Hort., 98: 493–498.
[32]. Wallach, D. (2006). Evaluating crop models. In D. Wallach, D. Makowski, & J.W. Jones, Working with dynamic crop models (pp. 11-19). Elsevier.
How to Cite
Bidarnamani, F., Zarei, H., Mashayekhi, K., & Kamkar, B. (2011). Leaf Area, Fresh Weight and Dry Weight Prediction Models for Ornamental Plants Ficus benjamina (cv. Starlight). Journal of Advanced Laboratory Research in Biology, 2(2), 57-63. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/64
Abstract viewed = 148 times, PDF downloaded = 64 times