Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents


  • M. Gangwar Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, India.
  • Sheela Rani Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India.
  • N. Sharma Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India.


Endophytic actinomycetes, IAA, Siderophores, Antagonistic activity, Pathogenic fungi


A total of 35 endophytic actinomycetes strains was isolated from the roots, stems and leaves tissues of healthy wheat plants and identified as Streptomyces sp. (24), Actinopolyspora sp. (3), Nocardia sp. (4), Saccharopolyspora sp. (2) Pseudonocardia (1) and Micromonospora sp. (1). Seventeen endophytic actinomycetes isolate showed abilities to solubilize phosphate and produce IAA in the range of 5 to 42mg/100ml and 18-42µg/ml respectively. Nineteen isolates produced catechol-type of siderophore ranging between 1.3-20.32µg/ml. Also, hydroxamate-type siderophore produced by 9 isolates in the range of 13.33-50.66µg/ml. Maximum catechol-type of siderophore production was observed in Streptomyces roseosporus W9 (20.32µg/ml) which was also displaying maximum antagonistic activity against ten different pathogenic fungi. The results indicated that internal tissues of healthy wheat plants exhibited endophytic actinomycetes diversity not only in terms of different types of isolates but also in terms of functional diversity.


Download data is not yet available.


Arnow, L.E. (1937). Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem., 118(2): 531–537. https://doi.org/10.1016/S0021-9258(18)74509-2.

Bar-Ness, E., Chen, Y., Hadar, Y., Marschner, H. & Römheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil, 130(1): 231–241. https://doi.org/10.1007/BF00011878

Benson, D.R. & Silvester, W.B. (1993). Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev., 57(2): 293–319.

Cao, L., Qiu, Z., You, J., Tan, H. & Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol. Lett., 247(2): 147–152. https://doi.org/10.1016/j.femsle.2005.05.006.

Coombs, J.T. & Franco, C.M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol., 69(9): 5603–5608. https://doi.org/10.1128/aem.69.9.5603-5608.2003.

Coombs, J.T., Michelsen, P.P. & Franco, C.M.M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol. Control, 29(3): 359–366. https://doi.org/10.1016/j.biocontrol.2003.08.001.

Crawford, D.L., Lynch, J.M., Whipps, J.M. & Ousley, M.A. (1993). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol., 59(11): 3899–3905. https://doi.org/10.1128/AEM.59.11.3899-3905.1993.

Csaky, T.Z. (1948). On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand., 2: 450-454.

de Araújo, J.M., da Silva, A.C. & Azevedo, J.L. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz. Arch. Biol. Technol., 43: 434-451. https://doi.org/10.1590/S1516-89132000000400016.

El-Tarabily, K.A., Nassar, A.H., Hardy, G.E. & Sivasithamparam, K. (2009). Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol., 106(1): 13–26. https://doi.org/10.1111/j.1365-2672.2008.03926.x.

Goodfellow, M. & Cross, T. (1984). Classification. In: Goodfellow, M., Mordarski, M. & Williams, S.T. (eds.). The biology of the Actinomycetes. Academic Press, London. pp. 7–164.

Gordon, S.A. & Weber, R.P. (1951). Colorimetric estimation of Indoleacetic acid. Plant Physiol., 26(1): 192–195. https://doi.org/10.1104/pp.26.1.192.

Hahn, D., Nickel, A. & Dawson, J. (1999). Assessing Frankia populations in plants and soil using molecular methods. FEMS Microbiol. Ecol., 29(3): 215–227. https://doi.org/10.1111/j.1574-6941.1999.tb00613.x.

Hamdali, H., Bouizgarne, B., Hafidi, M., Lebrihi, A., Virolle, M.J. & Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl. Soil Ecol., 38(1): 12–19. https://doi.org/10.1016/j.apsoil.2007.08.007.

Hasegawa, S., Meguro, A., Shimizu, M., Nishimura, T. & Kunoh, H. (2006). Endophytic Actinomycetes and Their Interactions with Host Plants. Actinomycetologica, 20(2): 72–81. https://doi.org/10.3209/saj.20.72.

Igarashi, Y., Iida, T., Sasaki, T., Saito, N., Yoshida, R. & Furumai, T. (2002). Isolation of Actinomycetes from Live Plants and Evaluation of Antiphytopathogenic Activity of their Metabolites. Actinomycetologica, 16(1): 9–13. https://doi.org/10.3209/saj.16_9.

Jackson, M.L. (1973). Estimation of phosphorus content. In: Soil Chemical Analysis. Prentice Hall, New Delhi, India. pp. 134-82.

Khamna, S., Yokota, A. & Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J. Microbiol. Biotechnol., 25(4): 649–655. https://doi.org/10.1007/s11274-008-9933-x.

Krechel, A., Faupel, A., Hallmann, J., Ulrich, A. & Berg, G. (2002). Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol., 48(9): 772–786. https://doi.org/10.1139/w02-071.

Kunoh, H. (2002). Endophytic Actinomycetes: Attractive Biocontrol Agents. J. Gen. Plant Pathol., 68: 249-252. https://doi.org/10.1007/PL00013084.

Leong, J. (1986). Siderophores: Their Biochemistry and Possible Role in the Biocontrol of Plant Pathogens. Ann. Rev. Phytopathol., 24(1): 187–209. https://doi.org/10.1146/annurev.py.24.090186.001155.

Nautiyal, C.S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 170(1): 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x.

Neilands, J.B. & Leong, S.A. (1986). Siderophores in Relation to Plant Growth and Disease. Ann. Rev. Plant Physiol., 37(1): 187-208. https://doi.org/10.1146/annurev.pp.37.060186.001155.

Nimnoi, P. & Pongsilp, N. (2009). Genetic Diversity and plant-growth promoting ability of the Indole-3-acetic Acid (IAA) synthetic bacteria isolated from agricultural soil as well as Rhizosphere, Rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala and Piper sarmentosum Roxb. Res. J. Agric. Biol. Sci., 5(1): 29-41.

Nimnoi, P., Pongsilp, N. & Lumyong, S. (2010). Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoters production. World J. Microbiol. Biotechnol., 26(2): 193–203. https://doi.org/10.1007/s11274-009-0159-3.

Sardi, P., Saracchi, M., Quaroni, S., Petrolini, B., Borgonovi, G.E. & Merli, S. (1992). Isolation of endophytic streptomyces strains from surface-sterilized roots. Appl. Environ. Microbiol., 58(8): 2691–2693. https://doi.org/10.1128/AEM.58.8.2691-2693.1992.

Schulz, B., Wanke, U., Draeger, S. & Aust, H.-J. (1993). Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res., 97(12): 1447–1450. https://doi.org/10.1016/S0953-7562(09)80215-3.

Schwyn, B. & Neilands, J. B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal. Biochem., 160(1): 47–56. https://doi.org/10.1016/0003-2697(87)90612-9.

Shimizu, M., Yazawa, S. & Ushijima, Y. (2009). A promising strain of endophytic Streptomyces sp. for biological control of cucumber anthracnose. J. Gen. Plant Pathol., 75(1): 27–36. https://doi.org/10.1007/s10327-008-0138-9.

Stone, J.K., Bacon, C.W. & White, J.F. (2000). An overview of endophytic microbes: endophytism defined. In: Bacon, C.W. & White, J.F. (eds). Microbial endophytes. Marcel Dekker, Inc., New York. pp. 3–30.

Taechowisan, T., Peberdy, J.F. & Lumyong, S. (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol., 19(4): 381–385. https://doi.org/10.1023/A:1023901107182.

Taechowisan, T. & Lumyong, S. (2003). Activity of endophytic actinomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Ann. Microbiol., 53(3): 291–298.

Tan, H.M., Cao, L.X., He, Z.F., Su, G.J., Lin, B. & Zhou, S.N. (2006). Isolation of Endophytic Actinomycetes from Different Cultivars of Tomato and their Activities Against Ralstonia solanacearum in Vitro. World J. Microbiol. Biotechnol., 22(12): 1275–1280. https://doi.org/10.1007/s11274-006-9172-y.

Tian, X.L., Cao, L.X., Tan, H.M., Zeng, Q.G., Jia, Y.Y., Han, W.Q. & Zhou, S.N. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J. Microbiol. Biotechnol., 20(3): 303–309. https://doi.org/10.1023/B:WIBI.0000023843.83692.3f.

Valdes, M., Perez, N.O., Estrada-De Los Santos, P., Caballero-Mellado, J., Pena-Cabriales, J.J., Normand, P. & Hirsch, A.M. (2005). Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl. Environ. Microbiol., 71(1): 460–466. https://doi.org/10.1128/AEM.71.1.460-466.2005.

Verma, V.C., Gond, S.K., Kumar, A., Mishra, A., Kharwar, R.N. & Gange, A.C. (2009). Endophytic Actinomycetes from Azadirachta indica A. Juss.: Isolation, Diversity, and Anti-microbial Activity. Microb. Ecol., 57(4): 749–756. https://doi.org/10.1007/s00248-008-9450-3.

Wang, Y., Brown, H.N., Crowley, D.E. & Szaniszlo, P.J. (1993). Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ., 16(5): 579–585. https://doi.org/10.1111/j.1365-3040.1993.tb00906.x.

Whitelaw, M A. (1999). Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi. Adv. Agron., 69: 99-151. https://doi.org/10.1016/S0065-2113(08)60948-7.

Yuan, W.M. & Crawford, D.L. (1995). Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl. Environ. Microbiol.,61: 3119-3128.




How to Cite

Gangwar, M., Rani, S., & Sharma, N. (2012). Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents. Journal of Advanced Laboratory Research in Biology, 3(1), 13–19. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/89