Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents

Authors

  • M. Gangwar Department of Microbiology, Punjab Agricultural University, Ludhiana-141004, India.
  • Sheela Rani Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India.
  • N. Sharma Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana-141004, India.

Keywords:

Endophytic actinomycetes, IAA, Siderophores, Antagonistic activity, Pathogenic fungi

Abstract

A total of 35 endophytic actinomycetes strains was isolated from the roots, stems and leaves tissues of healthy wheat plants and identified as Streptomyces sp. (24), Actinopolyspora sp. (3), Nocardia sp. (4), Saccharopolyspora sp. (2) Pseudonocardia (1) and Micromonospora sp. (1). Seventeen endophytic actinomycetes isolate showed abilities to solubilize phosphate and produce IAA in the range of 5 to 42mg/100ml and 18-42µg/ml respectively. Nineteen isolates produced catechol-type of siderophore ranging between 1.3-20.32µg/ml. Also, hydroxamate-type siderophore produced by 9 isolates in the range of 13.33-50.66µg/ml. Maximum catechol-type of siderophore production was observed in Streptomyces roseosporus W9 (20.32µg/ml) which was also displaying maximum antagonistic activity against ten different pathogenic fungi. The results indicated that internal tissues of healthy wheat plants exhibited endophytic actinomycetes diversity not only in terms of different types of isolates but also in terms of functional diversity.

Downloads

Download data is not yet available.

References

[1]. Arnow, L.E. (1937). Colorimetric estimation of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem., 118:531-535.
[2]. Bar-Ness, E., Chen, Y., Hadar, Y., Marschner, H., Romheld, V. (1991). Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil,130:231-241.
[3]. Benson, D.R., Silvester, W.B. (1993). Biology of Frankia strains actinomycete symbionts of actinorhizal plant. Microbiol. Rev., 57: 293–319.
[4]. Cao, L.X., Qiu, Z.Q., You, J.L., Tan, H.M., Zhou, S. (2005). Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS. Microbiol. Lett., 247:147–152.
[5]. Coombs, J.T., Franco, C.M.M. (2003). Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl. Environ. Microbiol., 69:5603–5608.
[6]. Coombs, J.T., Michelsen, P.P., Franco, C.M.M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol. Control., 29:359–366.
[7]. Crawford, D.L., Lynch, J.M., Whipps, J.M. & Ousley, M.A. (1993). Isolation and characterization of actinomycete antagonists of a fungal root pathogen. Appl. Environ. Microbiol., 59:3889– 3905.
[8]. Csaky, T.Z. (1948). On the estimation of bound hydroxylamine in biological materials. Acta. Chem. Scand., 2:450- 454.
[9]. De Araujo, J.M., da Silva, A.C., Azevedo, J.L. (2000). Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz. Arch. Biol. Technol., 43: 434 -451.
[10]. El-Tarabily, K.A., Nassar, A.H., Hardy, G.E., Sivasithamparam, K. (2009). Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. J. Appl. Microbiol., 106:13–26.
[11]. Goodfellow, M., Cross, T. (1984). Classification in the Biology of the Actinomycetes ed. Goodfellow, M., Mordarski, M. and Williams, S.T. pp. 7–164. London: Academic Press.
[12]. Gordon, S.A., Weber, R.P. (1951). Colorimetric estimation of Indoleacetic acid. Plant. Physiol., 26:192-195.
[13]. Hahn, D., Nickel, A., Dawson, J. (1999). Assessing Frankia populations in plants and soil using molecular methods. FEMS. Microbiol. Ecology, 29: 215-227.
[14]. Hamdali, H., Bouizgarne, B., Hafidi, M., Lebrihi, A., Virolle, M.J., Ouhdouch, Y. (2008). Screening for rock phosphate solubilizing actinomycetes from Moroccan phosphate mines. Appl. Soil. Ecol., 38:12-19.
[15]. Hasegawa, S., Meguro, A., Shimizu, M., Nishimura, T., Kunoh, H. (2006). Endophytic actinomycetes and their interactions with host plants. Actinomycetologica. 20:72–81.
[16]. Igarashi, Y., Iida, T., Sasaki, Y., Saito, N., Yoshida, R., Furumai, T. (2002). Isolation of actinomycetes from live plants and evaluation of antiphytopathogenic activity of their metabolites. Actinomycetologica, 16: 9-13.
[17]. Jackson, M.L. (1973). Estimation of phosphorus content. In: Soil Chemical Analysis, pp 134-82. Prentice Hall, New Delhi, India.
[18]. Khamna, S., Yokota, A., Lumyong, S. (2009). Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compound, indole-3-acetic acid andsiderophore production. World J. Microbiol. Biotechnol., 25:649-655.
[19]. Krechel, A., Faupel, A., Hallmann, J., Ulrich, A., Berg, G. (2002). Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can. J. Microbiol., 48:772– 786.
[20]. Kunoh, H. (2002). Endophytic actinomycetes: Attractive biocontrol agents. J. Gen. Plant Pathol., 68: 249– 52.
[21]. Leong, S.A. (1986). Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol., 24:187-209.
[22]. Nautiyal, C.S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 170:265–270.
[23]. Neilands, J.B., Leong, S.A. (1986). Siderophores in relation to plant growth and disease. Ann. Rev. Phytopathol., 37:187-208.
[24]. Nimnoi, P., Pongsilp, N. (2009). Genetic diversity and plant-growth promoting ability of the indole-3-acetic acid (IAA) synthetic bacteria isolated from agricultural soil as well as rhizosphere, rhizoplane and root tissue of Ficus religiosa L., Leucaena leucocephala and Piper sarmentosum Roxb. Res. J. Agric. Biol. Sci., 5:29–41.
[25]. Nimnoi, P., Pongsilp, N., Lumyong, S. (2010). Endophytic actinomycetes isolated from Aquilaria crassna Pierre ex Lec and screening of plant growth promoter’s production. World J. Microbiol. Biotechnol., 26:193–203.
[26]. Sardi, P., Saracchi, M., Quaroni, S., Petrolini, B., Borgonovi, G.E., Merli, S. (1992). Isolation of endophytic Streptomyces strain from surface sterilized root. Appl. Environ. Microbiol., 58: 2691-93.
[27]. Schulz, B., Wanke, U., Draeger, S. Aust, H.J. (1993). Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol. Res., 97:1447-1450.
[28]. Schwyn, B., Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophore. Ann. Biochem., 160:47-56.
[29]. Shimizu, M., Yazawa, S., Ushijima, Y. (2009). A promising strain of endophytic Streptomyces sp. For biological of cucumber anthracnose. J. Gen. Plant Pathol., 75:27–36.
[30]. Stone, J.K., Bacon, C.W., White, J.F. (2000). An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc., New York, pp 3–29.
[31]. Taechowisan, T., Peberdy, J.F., Lumyong, S. (2003). Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J. Microbiol. Biotechnol., 19:381-385.
[32]. Taechowisan, T. & Lumyong, S. (2003). Activity of endophytic actinomycetes from roots of Zingiber officinale and Alpinia galanga against phytopathogenic fungi. Ann. Microbol., 53:291-298.
[33]. Tan, H.M., Cao, L.X., He, Z.F., Su, G.J., Lin, B., Zhou, S.N. (2006). Isolation of endophytic actinomycetes from different cultivars of tomato and their activities against Ralstonia solanacearum in vitro. World J. Microbiol. Biotechnol., 22:1275–1280.
[34]. Tian, X.L., Cao, L.X., Tan, H.M., Zeng, Q.G., Jia, Y.Y., Han, W.Q., Zhou, S.N. (2004). Study on the communities of endophytic fungi and endophytic actinomycetes from rice and their antipathogenic activities in vitro. World J. Microbiol. Biotechnol., 20: 303–309.
[35]. Valdes, M., Perez, N.O., Estrada-De Los Santos, P., Caballero-Mellado, J., Pena-Cabriales, J.J., Normand, P., Hirsch, A.M. (2005). Non-Frankia actinomycetes isolated from surface-sterilized roots of Casuarina equisetifolia fix nitrogen. Appl. Environ. Microbiol., 71:460-466.
[36]. Verma, V.C., Gond, S.K., Kumar, A., Mishra, A., Kharwar, R.N., Gange, A. (2009). Endophytic Actinomycetes from Azadirachta indica A. Juss.: Isolation, Diversity, and Anti-microbial Activity. Microbial. Ecol., 57:749-756.
[37]. Wang, Y., Brown, H.N., Crowley, D.E., Szaniszlo, P.J. (1993). Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ., 16:579-585.
[38]. Whitelaw, M.A. (1999). Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron., 69: 99-151.
[39]. Yuan, W.M. & Crawford, D.L. (1995). Characterization of Streptomyces lydicus WYEC 108 as a potential bi-control agent against fungal root and seed rots. Appl. Environ. Microbiol., 61: 3119-3128.

Downloads

Published

01-01-2012

How to Cite

Gangwar, M., Rani, S., & Sharma, N. (2012). Diversity of Endophytic Actinomycetes from Wheat and its Potential as Plant Growth Promoting and Biocontrol Agents. Journal of Advanced Laboratory Research in Biology, 3(1), 13–19. Retrieved from https://e-journal.sospublication.co.in/index.php/jalrb/article/view/89

Issue

Section

Articles